
PHYSICAL DESIGN LAB MANUAL

Department of Electronics & Communication Engineering

J.N.N INSTITUTE OF ENGINEERING
90, USHAA GARDEN, KANNIGAIPAIR,THIRUVALLUR,TAMILNADU-601102

(NAAC ‘A’ Grade | Approved by AICTE | Affiliated to Anna University)

PHYSICAL DESIGN LAB MANUAL

 PREPARED

 BY

Department of Electronics & Communication Engineering

J.N.N INSTITUTE OF ENGINEERING
90, USHAA GARDEN, KANNIGAIPAIR,THIRUVALLUR,TAMILNADU-601102

(NAAC ‘A’ Grade | Approved by AICTE | Affiliated to Anna University)

J.N.N Institute Of Engineering

Department of Electronics and Communication Engineering

Vision of the institute

Lead the transformation of engineering and management learning experience to educate the next

generation of innovators and entrepreneurs who want to make the world a better place.

Mission of the institute

Mission_1: To develop the required resources and infrastructure and to establish a conducive

ambience for the teaching-learning process.

Mission_2: To nurture professional and ethical values in the students and to instil in them a

spirit of innovation and entrepreneurship.

Mission_3: To encourage a desire for higher learning and research in the students and to equip

them to face global challenges.

Mission_4: To provide opportunities for students to learn job-relevant skills to make them

industry ready.

Mission_5: To interact with industries and other organisations to facilitate transfer of knowledge

and know-how.

Vision of the department

Cultivating innovative and entrepreneurial Electronics and Communication Engineering graduates

to ethically address global challenges through quality teaching and learning practices.

Mission of the department

Mission_1: To facilitate a state-of-the-art teaching-learning process, imparting comprehensive

knowledge in electronics and communication engineering and related interdisciplinary areas.
Mission_2: To foster a sense of curiosity, critical thinking and ethical practices in students,

preparing them for a continuous learning.
Mission_3: To instill innovative team work and industry collaboration for enhancing

entrepreneurial skills, employability and research capabilities in graduates.
Mission_4: To inculcate ability for delivering novel solutions by taking social and environmental

aspects into consideration.

Programme Outcomes(Pos)

PO_1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO_2 Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

PO_3 Design/development of solutions: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration for

the public health and safety, and the cultural, societal, and environmental
considerations.

PO_4 Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

PO_5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

PO_6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

PO_7 Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

PO_8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
of the engineering practice.

PO_9 Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

PO_10 Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive
clear instructions.

PO_11 Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO_12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

Programme Specific Outcome(PSOs)

PSO_1

Electronic System Design/Analysis: Apply the fundamental concepts of Electronics and
Communication Engineering to design and analysis of Electronics Systems for applications including
Signal Processing, Communication & Networking, Embedded Systems, VLSI design and
Control Systems.

PSO_2

Software Tools: Proficiency in specialized software tools and computer programming useful for

the design and analysis of complex electronic systems to meet challenges in contemporary

business environment.

J.N.N INSTITUTE OF ENGINEERING

90, Ushaa Garden, Kannigaipair,Chennai-Periyapalayam Highway,

Tiruvallur, Tamil Nadu 601102

Department of Electronics &Communication Engineering

PART A: FPGA Level Implementation

1. Realization of Logic Gates.
2. 4-bit ripple carry and carry look ahead adder using behavioral, dataflow and

structural modeling

3. Design and Implementation of

a) 16:1 mux through 4:1 mux

b) 3:8 decoder realization through 2:4 decoder

4. Design and Implementation of 8:3 encoder
5. Design and Implementation of 8-bit parity generator checker
6. Design and Implementation of different Flip-Flops
7. Design and Implementation of 4-bit sequence detector through Mealy and

Moore state machine

PART B: Back-end Level Design and Implementation

8. Design and Implementation of Universal Gates
9. Design and Implementation of an Inverter

10. Design and Implementation of Full Adder

11. Design and Implementation of Full Subtractor
12. Design and Implementation of D latch

PART C: Advanced Experiments

13. Design and Implementation of Differential Amplifier.

14. Design and Implementation of ALU

CONTENTS

S. NO. NAME OF THE EXPERIMENT PAGE NO

PART A

1. Realization of Logic Gates.

2. 4-bit ripple carry and carry look ahead adder using behavioral

dataflow and structural

modelling

3. Design and Implementation of

A) 16:1 MUX through 4:

B) 3:8 decoder realization 2:4 decoder

4. Design and Implementation of 8:3 encoder

5. Design and Implementation of 8-bit parity generator and checker

6. Design and Implementation of different Flip-Flops

7. Design and Implementation of 4-bit sequence detector through

Mealy and Moore state machine

PART B

8. Design and Implementation of Universal Gates

9. Design and Implementation of an Inverter

10. Design and Implementation of Full Adder

11. Design and Implementation of Full Subtractor

12. Design and Implementation of D latch

Advanced Experiments

13. Design and Implementation of Differential Amplifier

14. Design and Implementation of ALU

DOS & DONTS IN LABORATORY

1. While entering the Laboratory, the students should follow the dress code

Wear shoes, White Apron & Female students should tie their hair back).

2. The students should bring their observation note book, practical manual,

record note book, calculator, necessary stationary items and graph sheets if

any for the lab classes without which the students will not be allowed for

doing the practical.

3. All the equipments and components should be handled with utmost care. Any

breakage/damage will be charged.

4. If any damage/breakage is noticed, it should be reported to the instructor

immediately.

5. If a student notices any short circuits, improper wiring and unusual smells

immediately the same thing is to be brought to the notice of technician/lab in

charge.

6. At the end of practical class the apparatus should be returned to the lab

technician and take back the indent slip.

7. Each experiment after completion should be written in the observation note

book and should be corrected by the lab in charge on the same day of the

practical class.

8. Each experiment should be written in the record note book only after getting

signature from the lab in charge in the observation note book.

9. Record should be submitted in the successive lab session after completion of

the experiment.

10. 100% attendance should be maintained for the practical classes.

SCHEME OF EVALUATION

S.N

o

Program

Date

Marks Awarded

Total

30(M) Record

(10M)

Obs.

(10M

)

Viva

(5M)

Attd.

(5M)

PART-A

1 Realization of Logic Gates.

2
4-bit ripple carry and carry look ahead adder

3.

Design and Implementation of

A) 16:1 MUX through 4:1

B) 3:8 decoder realization 2:4 decoder

4. Design and Implementation of 8:3encoder

5.
Design and Implementation of 8-bit parity

generator and checker

6.
Design and Implementation of different Flip-

Flops

7.

Design and Implementation of 4-bit sequence

detector through Mealy and Moore state

machine

PART-B

8.
Design and Implementation of Universal

Gates

9. Design and Implementation of an Inverter

10. Design and Implementation of Full Adder

11. Design and Implementation of Full Subtractor

12.
Design and Implementation of D latch

Advanced Experiments

13.
Design and Implementation of differentitional

amplifier

14. Design and Implementation of ALU

Signature of Lab In-charge

1

PART A
(FPGA Level Implementation)

2

CIRCUIT DIAGRAM & TRUTH TABLES

AND GATE TRUTH TABLE

OR GATE

NOT GATE

NAND GATE

NOR GATE

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

A Y

0 1

1 0

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

3

EXP NO.

REALIZATION OF ALL LOGIC GATES

DATE

1

AIM:

To write a VHDL/Verilog code for All Logic Gates and to generate

synthesis report, RTL schematic and to implement designs using FPGA (Spartan-3).

APPARATUS:

1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.

2. Simulation Tool: Modelsim Simulator.

PROCEDURE:

1. Open Xilinx ISE 9.1i.

2. Create a new source file in a new project with suitable name.

3. Create the file in VHDL/Verilog module.

4. Select the appropriate input and output ports according to the requirements.

5. Type the program and save it and synthesize the process.

6. Select Synthesize XST, check for syntax errors and generate report and RTL

schematic.

7. Create another new source.

8. Select source type as Test bench wave form.

9. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after that

double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in

startup options.

3. Select boundary scan in ‘impact window’ after double clicking on ‘configure Device’.
4. In ‘generate programming file’ double clicking on ‘programming file generation report. Bit

file will be generated.
5. Xilinx boundary scan window will appear when the bit file is selected. Right click on Xilinx

component and select program.

6. Programming properties will appear and finally program will be succeeded.

7. Thus the program can be dumped into FPGA kit and finally output can be seen on the kit.

4

SIMULATED MODEL OUTPUT WAVEFORMS

 AND gate

OR gate

NOT GATE

NAND gate

5

VHDL CODE:

AND GATE :

Library IEEE;

Use IEEE.STD_LOGIC_1164.ALL;

Use IEEE.STD_LOGIC_ARITH.ALL;

Use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Andgate is

Port (a : in STD_LOGIC;
b : in STD_LOGIC;

y : out STD_LOGIC);
end Andgate ;

architecture Behavioral of Andgate is

begin

y <= a and b;

end Behavioral;

OR GATE :

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity orgate is
Port (a : in STD_LOGIC;

b : in STD_LOGIC;

y : out STD_LOGIC);

end orgate ;

architecture Behavioral of orgate is

begin

y <= a or b;

end Behavioral;

6

NOR gate

BLOCK DIAGRAM:

7

NOT GATE :

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity notgate is

Port (a : in STD_LOGIC;

y : out STD_LOGIC);
end notgate ;

architecture Behavioral of notgate is

begin

y <= not a;

end Behavioral;

NAND GATE :

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity nandgate is

Port (a : in STD_LOGIC;

b : in STD_LOGIC;

y : out STD_LOGIC);
end nandgate ;

architecture Behavioral of nandgate is

begin

y <= a nand b;

end Behavioral;

NOR GATE :
 library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity norgate is

Port (a : in STD_LOGIC;

b : in STD_LOGIC;

y : out STD_LOGIC);

end norgate ;

architecture Behavioral of norgate is

begin

y <= a nor b;
end Behavioral;

8

TECHNOLOGY SCHEMATIC:

RTL SCHEMATIC:

9

DESIGN SUMMARY:

Number of Slices : 3 out of 960 0%

Number of 4 input LUTs

Number of IOs

Number of bonded IOBs

: 5 out of

: 7

: 7 out of

1920 0%

66 10%

SYNTHESIS REPORT:

RTL Top Level Output File Name : allgates.ngr

Top Level Output File Name : allgates

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy

Design Statistics

IOs

Cell Usage :

BELS

: NO

: 7

: 5

INV : 1

LUT2 : 4

IO Buffers : 7

IBUF : 2

OBUF : 5

RESULT:

CONCLUSION:

10

VIVA QUESTIONS:

1. Design all basic gates using 2:1 multiplexer?

2. Write the dataflow code for the logic gates

3. What are logic gates why the called so?

4. Which gates are called as universal gates? What are its advantages?

5. What are the applications of logic gates?

11

CIRCUIT DIAGRAM:

4-BIT RIPPLE CARRY ADDER

4-BIT CARRY LOOK AHEAD ADDER:

12

EXP NO. 4- BIT RIPPLE CARRYAND CARRY LOOK

AHEAD ADDER

DATE

2

AIM:

To write a VHDL/Verilog code for 4-bit ripple carry and carry look ahead adder and to

generate synthesis report, RTL schematic and to implement designs using FPGA (Spartan-3).

APPARATUS:

1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.

2. Simulation Tool: Modelsim Simulator.

PROCEDURE:

1. Open Xilinx ISE 9.1i.

2. Create a new source file in a new project with suitable name.

3. Create the file in VHDL/Verilog module.

4. Select the appropriate input and output ports according to the requirements.

5. Type the program and save it and synthesize the process.

6. Select Synthesize XST, check for syntax errors and generate report and RTL schematic.

7. Create another new source.

8. Select source type as Test bench wave form.

9. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after

that double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in

startup options.

3. Select boundary scan in ‘impact window’ after double clicking on ‘configure device’.
4. In ‘generate programming file’ double clicking on ‘programming file generation report.

Bit file will be generated.

5. Xilinx boundary scan window will appear when the bit file is selected. Right click on

Xilinx component and select program.

6. Programming properties will appear and finally program will be succeeded.

7. Thus the program can be dumped into FPGA kit and finally output can be seen on the kit.

13

SIMULATED MODEL OUTPUT WAVEFORM:

 4-BIT RIPPLE CARRY ADDER:

4-BIT CARRY LOOK AHEAD ADDER:

14

4-BIT RIPPLE CARRY ADDER VHDL CODE:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Ripple_Adder is

Port (A : in STD_LOGIC_VECTOR (3 downto 0);
B : in STD_LOGIC_VECTOR (3 downto 0);

Cin : in STD_LOGIC;

S : out STD_LOGIC_VECTOR (3 downto 0); Cout : out STD_LOGIC);

end Ripple_Adder;

architecture Behavioral of Ripple_Adder is

component full_adder_vhdl_code Port (A : in STD_LOGIC;
B : in STD_LOGIC;

Cin : in STD_LOGIC;
S : out STD_LOGIC;

Cout : out STD_LOGIC);
end component;

signal c1,c2,c3: STD_LOGIC;

begin

FA1: full_adder_vhdl_code port map(A(0),B(0),Cin,S(0),c1);

FA2: full_adder_vhdl_code port map(A(1),B(1),c1,S(1),c2);

FA3: full_adder_vhdl_code port map(A(2),B(2),c2,S(2),c3);

FA4: full_adder_vhdl_code port map(A(3),B(3),c3,S(3),Cout);

end Behavioral;

4-BIT CARRY LOOK AHEAD ADDER VHDL CODE:

Partial Full Adder:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Partial_Full_Adder is
Port (A : in STD_LOGIC;
B : in STD_LOGIC;
Cin : in STD_LOGIC;
S : out STD_LOGIC;
P : out STD_LOGIC;
G : out STD_LOGIC);

End Partial_Full_Adder;

Architecture Behavioral of Partial_Full_Adder is

begin S <= A xor B xor Cin;

P <= A xor B;

G <= A and B;
end Behavioral;

15

Carry Look Ahead Adder:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Carry_Look_Ahead is

Port (A : in STD_LOGIC_VECTOR (3 downto 0);

B: in STD_LOGIC_VECTOR (3 downto 0);

Cin : in STD_LOGIC;

S : out STD_LOGIC_VECTOR (3 downto 0);

Cout : out STD_LOGIC);

end Carry_Look_Ahead;

architecture Behavioral of Carry_Look_Ahead is component Partial_Full_Adder

Port (A : in STD_LOGIC;

B : in STD_LOGIC;

Cin : in STD_LOGIC;

S : out STD_LOGIC;

P : out STD_LOGIC;

G : out STD_LOGIC);

end component;

signal c1,c2,c3: STD_LOGIC;

signal P,G: STD_LOGIC_VECTOR(3 downto 0);

begin

PFA1: Partial_Full_Adder port map(A(0), B(0), Cin, S(0), P(0), G(0));

PFA2: Partial_Full_Adder port map(A(1), B(1), c1, S(1), P(1), G(1));

PFA3: Partial_Full_Adder port map(A(2), B(2), c2, S(2), P(2), G(2));

PFA4: Partial_Full_Adder port map(A(3), B(3), c3, S(3), P(3), G(3));

c1 <= G(0) OR (P(0) AND Cin);

c2 <= G(1) OR (P(1) AND G(0)) OR (P(1) AND P(0) AND Cin);

c3 <= G(2) OR (P(2) AND G(1)) OR (P(2) AND P(1) AND G(0)) OR (P(2) AND P(1)

AND P(0) AND Cin);

Cout <= G(3) OR (P(3) AND G(2)) OR (P(3) AND P(2) AND G(1)) OR (P(3) AND

P(2) AND P(1) AND G(0)) OR (P(3) AND P(2) AND P(1) AND P(0) AND Cin);

end Behavioral;

16

RTL SCHEMATIC:

TECHNOLOGY SCHEMATIC:

17

18

DEVICE UTILIZATION SUMMARY:

Selected Device: 3s400pq208-4

Number of Slices: 0 out of 3584 0%

Number of IOs: 14

Number of bonded IOBs: 14 out of 141 9%

SYNTHESIS REPORT:

RTL Top Level Output File Name : Carry_Look_Ahead.ngr

Top Level Output File Name : Carry_Look_Ahead

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics

IOs 14

Cell Usage :

BELS 4

LUT3 4

IO Buffers 14

IBUF 9

OBUF 5

Others 4

Partial_Full_Adder 4

Selected Device : 3s400pq208-4

Number of Slices : 2 out of 3584 0%

Number of 4 input LUTs : 4 out of 7168 0%

Number of IOs : 14

Number of bonded IOBs : 14 out of 141 9%

SYNTHESIS REPORT

RTL Top Level Output File Name : Ripple_Adder.ngr

Top Level Output File Name : Ripple_Adder

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics

IOs

: 14

Cell Usage :

IO Buffers

: 14

IBUF : 9

OBUF : 5

Others : 4

full_adder_vhdl_code : 4

19

RESULT:

CONCLUSION:

VIVA QUESTIONS:

1. Why we use ripple carry adder?

2. What is 4-bir carry look ahead adder?

3. What is delay of ripple carry adder?

4. Why CLA is better than RCA?

5. Is ripple carry adder and carry look ahead adder same?

20

CIRCUIT16:1 MUX USING 4:1MUX

TRUTH TABLE:

SIMULATED MODEL OUTPUT WAVEFORM

21

EXP NO.

16:1 MUX USING 4:1MUX

DATE

3(a)

AIM:

To write a VHDL/Verilog code for 16:1 Mux generate synthesis report, RTL schematic

and to implement designs using FPGA (Spartan-2).

APPARATUS:

1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.

2. Simulation Tool: Modelsim Simulator.

PROCEDURE:

1. Open Xilinx ISE 9.1i.

2. Create a new source file in a new project with suitable name.

3. Create the file in VHDL/Verilog module.

4. Select the appropriate input and output ports according to the requirements.

5. Type the program and save it and synthesize the process.

6. Select Synthesize XST, check for syntax errors and generate report and RTL schematic.

7. Create another new source.

8. Select source type as Test bench wave form.

9. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after that

double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in

startup options.

3. Select boundary scan in ‘impact window’ after double clicking on ‘configure Device’.
4. In ‘generate programming file’ double clicking on ‘programming file generation report. Bit

file will be generated.

5. Xilinx boundary scan window will appear when the bit file is selected. Right click on Xilinx

component and select program.

6. Programming properties will appear and finally program will be succeeded.

7. Thus the program can be dumped into FPGA kit and finally output can be seen on the kit.

22

CIRCUIT DIAGRAM:

Y0_L

G1

G2A_L

G2B_L

A

B

C

Y1_L

Y2_L

 Y3_L

Y4_L

Y5_L

Y6_L

Y7_L

23

VHDL CODE FOR 16:1 using 4:1 mux

Library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity kanhe_4x1mux is
port(a,b,c,d : in std_logic;
S0,s1 : in std_logic;
q : out std_logic);
end kanhe_4x1mux;

Architecture kanhe_4x1mux1 of kanhe_4x1mux is
Begin
Process(a,b,c,d,s0,s1)
Begin

If s0 ='0' and s1 ='0' then q <= a;
Elsif s0 ='1' and s1 ='0' then q <= b;
elsif s0 ='0' and s1='1' then q <= c;
else q <=d;
end if;
End process;
End kanhe_4x1mux1;

Main program:

Library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity kanhe_16x1mux is

port(a:in std_logic_vector(15 downto 0);

s: in std_logic_vector(3 downto 0);

Z: out std_logic);
End kanhe_ 16 x1 mux;

Architecture kanhe_ 16 x1 mux1 of kanhe_ 16 x1 mux is

signal z1 , z2 , z3 , z4 : std_logic;

component kanhe_4x1mux is

port(a,b,c,d,s0,s1:in std_logic;

Q:out std_logic);

End component;

Begin

M1 : kanhe_4x1mux port map(a(0), a(1) , a(2) , a(3), s(0) , s(1), z1);

m 2 : kanhe_4x1mux port map(a(4), a(5) , a(6) , a(7), s(0) , s(1), z2);

m 3 : kanhe_4x1mux port map(a(8), a(9) , a(10) , a(11), s(0), s(1), z3);

m 4 : kanhe_4x1mux port map(a(12), a(13) , a(14), a(15), s(0), s(1) , z4);

m 5 : kanhe_4x1mux port map(z1 , z2 , z3 , z4 , s(2), s(3) , z);

End kanhe_ 16 x1 mux1 ;

24

EXP NO.
3:8 DECODER

DATE

3(b)

AIM:

To write a VHDL/Verilog code for 3x8 Decoder and to generate synthesis report, RTL
schematic and to implement designs using FPGA (Spartan-2).

APPARATUS:

1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.

2. Simulation Tool: Modelsim Simulator.

PROCEDURE:

1. Open Xilinx ISE 9.1i.

2. Create a new source file in a new project with suitable name.

3. Create the file in VHDL/Verilog module.

4. Select the appropriate input and output ports according to the requirements.

5. Type the program and save it and synthesize the process.

6. Select Synthesize XST, check for syntax errors and generate report and RTL schematic.

7. Create another new source.

8. Select source type as Test bench wave form.

9. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after

that double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in
startup options.

3. Select boundary scan in ‘impact window’ after double clicking on ‘configure device’.

4. In ‘generate programming file’ double clicking on ‘programming file generation report.

Bit file will be generated.

5. Xilinx boundary scan window will appear when the bit file is selected. Right click on

Xilinx component and select program.

6. Programming properties will appear and finally program will be succeeded.
7. Thus the program can be dumped into FPGA kit and finally output can be seen on the kit.

25

TRUTH TABLE:

Selected enable inputs inputs outputs
G1 G2A_L G2B_L A(2) A(1) A(0) Y(7) Y(6) Y(5) Y(4) Y(3) Y(2) Y(1) Y(0)

0 X X X X X 1 1 1 1 1 1 1 1

X 1 X X X X 1 1 1 1 1 1 1 1

X X 1 X X X 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 1 1 1 1 0

1 0 0 0 0 1 1 1 1 1 1 1 0 1

1 0 0 0 1 0 1 1 1 1 1 0 1 1

1 0 0 0 1 1 1 1 1 1 0 1 1 1

1 0 0 1 0 0 1 1 1 0 1 1 1 1

1 0 0 1 0 1 1 1 0 1 1 1 1 1

1 0 0 1 1 0 1 0 1 1 1 1 1 1

1 0 0 1 1 1 0 1 1 1 1 1 1 1

SIMULATION MODEL OUTPUT WAVEFORM

BLOCK DIAGRAM:

26

VHDL CODE:

VHDL CODE FOR 3 t0 8 DECODER-BEHAVIORAL MODEL :

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity dec3to8_beh is
port (g1 : in STD_LOGIC;

g2a_l : in STD_LOGIC;

g2b_l : in STD_LOGIC;

a : in STD_LOGIC_VECTOR(2 downto 0);
y_l : out STD_LOGIC_VECTOR(7 downto 0));

end dec3to8_beh;

architecture Behavioral of dec3to8_beh is

begin

process (g1,g2a_l,g2b_l,a)

begin

if (g1='0' and g2a_l='0' and g2b_l='0')then

y_l<= "11111111";

elsif(g1 ='1' and g2a_l='0' and g2b_l='0') then

if(a="000")then

y_l<="11111110";

elsif(a="001") then

y_l<="11111101";

elsif(a="010")then

y_l<="11111011";

elsif(a="011")then

y_l<="11110111";

elsif(a="100")then

y_l<="11101111";

elsif(a="101")then

y_l<="11011111";

elsif(a="110")then

y_l<="10111111";

elsif(a="111") then

y_l<="01111111";

end if;

end if;

end process;

end Behavioral;

27

TECHNOLOGY SCHEMATIC:

RTL SCHEMATIC:

28

DEVICE UTILIZATION SUMMARY:

Number of Slices: 8 out of 960 0%

Number of 4 input LUTs:
Number of IOs:
Number of bonded IOBs:

14 out of 1920

14
14 out of 66

0%

21%

IOB Flip Flops: 8

SYNTHESIS REPORT:

RTL Top Level Output File Name : decoder.ngr

Top Level Output File Name : decoder

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy

Design Statistics

IOs

Cell Usage:

BELS

: NO

: 14

: 14

LUT2 : 4

LUT3 : 2

LUT4 : 8

FlipFlops/Latches : 8

LD : 8

IO Buffers : 14

IBUF : 6

OBUF : 8

RESULT:

CONCLUSION:

29

VIVA QUESTIONS:

1. Write the behavioral code for the IC 74x138.

2. Write the VHDL code for the IC 74x138 using CASE statement.

3. What does priority encoder mean?

4. How many outputs will a decimal-to-BCD encoder have?

5. Can an encoder be a transducer?

30

EXP NO.

8:3 ENCODER

DATE

4

AIM:

To write a VHDL/Verilog code for 8:3 Encoder and to generate synthesis report, RTL schematic

and to implement designs using FPGA (Spartan-3).

APPARATUS:

1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.

2. Simulation Tool: Modelsim Simulator.

PROCEDURE:

1. Open Xilinx ISE 9.1i.

2. Create a new source file in a new project with suitable name.

3. Create the file in VHDL/Verilog module.

4. Select the appropriate input and output ports according to the requirements.

5. Type the program and save it and synthesize the process.

6. Select Synthesize XST, check for syntax errors and generate report and RTL schematic.

7. Create another new source.

8. Select source type as Test bench wave form.

9. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after

that double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in

startup options.

3. Select boundary scan in ‘impact window’ after double clicking on ‘configure device’.
4. In ‘generate programming file’ double clicking on ‘programming file generation report.

Bit file will be generated.

5. Xilinx boundary scan window will appear when the bit file is selected. Right click on

Xilinx component and select program.

6. Programming properties will appear and finally program will be succeeded.

7. Thus the program can be dumped into FPGA kit and finally output can be seen on the kit.

31

VHDL CODE FOR 8 to 3 ENCODER:

l ibrary ieee;

use ieee. std_logic_ 1164 . all;

begin

case p is

entity e83 is

port(p: in std_logic_vector(7 downto 0);

y: out std_logic_vector(2 downto 0));

end e83 ;

architecture beh of e83 is

begin

process(p)

when "00000001"=>y<="000";

when "00000001"=>y<="001";

when "00000100"=>y<="010";

when "00001000"=>y<="011";

when "00010000"=>y<="100";

when "00100000"=>y<="101";

when "01000000"=>y<="110";

when "10000000"=>y<="111";

when others=>y<="UUU";

end case;

end process;

32

RTL SCHEMATIC:

TRUTH TABLE:

INPUT
S

OUTPUTS

P7 P6 P5 P
4

P3 P2 P1 P0 Y(2) Y(1) Y(0)

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1

33

SIMULATION MODEL OUTPUT WAVEFORM

RESULT:

CONCLUSION:

34

VIVA QUESTIONS:

1. what is the use of 8:3 encoder?

2. What are the types of encoder?

3. How is an encoder different from a decoder?

4. How many gates are required for a 8 to 3 encoder?

5. Where is encoder used?

35

CIRCUIT DIAGRAM:

The 8-bit parity generator

TRUTH TABLE:

SIMULATION MODEL OUTPUT WAVEFORM :

36

EXP NO.

PARITY GENERATOR AND CHECKER

DATE

5

AIM:

To write a VHDL/Verilog code for Parity generator and checker synthesis report, RTL

schematic and to implement designs using FPGA (Spartan-3).

APPARATUS:

1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.

2. Simulation Tool: Modelsim Simulator.

PROCEDURE:

1. Open Xilinx ISE 9.1i.

2. Create a new source file in a new project with suitable name.

3. Create the file in VHDL/Verilog module.

4. Select the appropriate input and output ports according to the requirements.

5. Type the program and save it and synthesize the process.

6. Select Synthesize XST, check for syntax errors and generate report and RTL schematic.

7. Create another new source.

8. Select source type as Test bench wave form.

9. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after

that double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in

startup options.

3. Select boundary scan in ‘impact window’ after double clicking on ‘configure device’.

4. In ‘generate programming file’ double clicking on ‘programming file generation report.

Bit file will be generated.

5. Xilinx boundary scan window will appear when the bit file is selected. Right click on

Xilinx component and select program.

6. Programming properties will appear and finally program will be succeeded.
7. Thus the program can be dumped into FPGA kit and finally output can be seen on the kit.

37

CIRCUIT DIAGRAM:

TRUTH TABLE:

SIMULATION MODEL OUTPUT WAVEFORM :

38

VHDL CODE:

The 8-bit parity generator:

library ieee;

use ieee.std_logic_1164.all;

entity parity is

port(data:in bit_vector(7 downto 0);

even_p,odd_p: out bit);

end parity;

architecture parity_gen of parity is

signal temp : bit_vector(5 downto 0);

begin

temp(0)<=data(0) xor data(1);

temp(1)<=temp(0) xor data(2);

temp(2)<=temp(1) xor data(3);

temp(3)<=temp(2) xor data(4);

temp(4)<=temp(3) xor data(5);

temp(5)<=temp(4) xor data(6);

even_p <= temp(5) xor data(7);

odd_p <= not(temp(5) xor data(7);

end parity_gen;

The 8-bit parity checker :

library ieee;

use ieee.std_logic_1164.all;

entity parity is

port(data:in bit_vector(7 downto 0);

even_p,odd_p: out bit);

end parity;

architecture parity_gen of parity is

signal temp : bit_vector(5 downto 0);

begin

temp(0)<=data(0) xor data(1);

temp(1)<=temp(0) xor data(2);

temp(2)<=temp(1) xor data(3);

temp(3)<=temp(2) xor data(4);

temp(4)<=temp(3) xor data(5);

temp(5)<=temp(4) xor data(6);

even_p <= temp(5) xor data(7);

odd_p <= not(temp(5) xor data(7);

end parity_arch;

39

RESULT:

CONCLUSION:

VIVA QUESTIONS:

1. What is parity generator and checker?

2. Which gate is ideal for checking the parity of data?

3. What is the purpose of parity checker?

4. What is a 3-bit parity checker?

5. How is parity calaculated?

40

TRUTH TABLE :

CLK PR_L CLR_L D Q QN

x 0 1 x 1 0

x 1 0 x 0 1

x 0 0 x 1 1

1 1 1 0 0 1

1 1 1 1 1 0

1 1 x Q QN

FLIP FLOPS:

LOGIC DIAGRAM OF IC 74X74

LOGIC DIARAM OF D FLIP FLOP

L

L Q

CLK QN

D

41

EXP NO. FLIP FLOPS DATE

6

AIM:

To write a VHDL/Verilog code for Flip Flop and to generate synthesis report, RTL schematic

and to implement designs using FPGA (Spartan-2).

APPARATUS:

1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.

2. Simulation Tool: Modelsim Simulator.

PROCEDURE:

1. Open Xilinx ISE 9.1i.

2. Create a new source file in a new project with suitable name.

3. Create the file in VHDL/Verilog module.

4. Select the appropriate input and output ports according to the requirements.

5. Type the program and save it and synthesize the process.

6. Select Synthesize XST, check for syntax errors and generate report and RTL schematic.
7. Create another new source.

8. Select source type as Test bench wave form.

9. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after that

double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in

startup options.

3. Select boundary scan in ‘impact window’ after double clicking on ‘configure Device’.
4. In ‘generate programming file’ double clicking on ‘programming file generation report. Bit

file will be generated.

5. Xilinx boundary scan window will appear when the bit file is selected. Right click on Xilinx
component and select program.

6. Programming properties will appear and finally program will be succeeded.

7. Thus the program can be dumped into FPGA kit and finally output can be seen on the kit.

42

TRUTH TABLE:

BLOCK DIAGRAM:

TRUTH TABLE :

CLK PR_L CLR_L D Q QN

x 0 1 x 1 0

x 1 0 x 0 1

x 0 0 x 1 1

 1 1 1 0 0 1

1 1 1 1 1 0

 1 1 x Q QN

SIMULATED MODEL OUTPUT WAVEFORM:

43

VHDL CODE:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity dfff is

Port (d: in STD_LOGIC_VECTOR(0 to 1);

clk : in STD_LOGIC_VECTOR;

pr : in STD_LOGIC_VECTOR(0 to 1);

clr : in STD_LOGIC_VECTOR(0 to 1);

q : inout STD_LOGIC_VECTOR(0 to 1);

nq :inout STD_LOGIC_VECTOR(0 to 1));

end DFFF;

architecture structural of DFFF is

component dff1

port(d1,clk1,pr1,clr1:in std_logic;

q1,nq1:inout std_logic);

end component;

begin

D1:dff1 port map(d(0),clk, pr(0),clr(0),q(0),nq(0));

D2:dff1 port map(d(1),clk, pr(1),clr(1),q(1),nq(1));

end structural;

44

TECHNOLOGY SCHEMATIC:

RTLSCHEMATIC:

45

VHDL CODE FOR COMPONENT D FLIPFLOP:

entity dff1 is

Port (d1: in STD_LOGIC;

Clk1 : in STD_LOGIC;

Pr1 : in STD_LOGIC;

Clr1 : in STD_LOGIC;

Q1 : inout STD_LOGIC;

Nq1 :inout STD_LOGIC);

end dff1;

architecture Behavioral of dff1 is

begin

process(d1,pr1,clr1,clk1)

begin

if(pr1='0' and clr1='0')then

q1<='1';nq1<='1';

elsif(pr1='0' and clr1='1')then

q1<='1';nq1<='0';

elsif(pr1='1' and clr1='0')then

q1<='0';nq1<='1';

else

if(clk1='1' and clk1'event)then

q1<=d1;nq1<=not d1;

else

q1<=q1;nq1<=nq1;

end if;

end if;

end process;

end Behavioral;

46

DEVICE UTILIZATION SUMMARY:

Number of Slices : 3 out of 960 0%

Number of Slice Flip Flops : 2 out of 1920 0%

Number of 4 input LUTs : 5 out of

Number of IOs : 6

Number of bonded IOBs : 6 out of

1920

66

0%

9%

IOB Flip Flops : 2
Number of GCLKs : 1 out of 24 4%

SYNTHESIS REPORT:

RTL Top Level Output File Name : dff.ngr

Top Level Output File Name : dff

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy

Design Statistics

IOs

Cell Usage :
BELS

: NO

: 6

: 5

INV : 3

LUT2 : 2

FlipFlops/Latches : 2

FDCP : 2

Clock Buffers : 1

BUFGP : 1

IO Buffers : 5

IBUF : 3

OBUF : 2

RESULT:

CONCLUSION:

47

VIVA QUESTIONS:

1. What are the applications of Flip flops?

2. The truth table for an S-R flip-flop has how many VALID entries?

3. When both inputs of a J-K flip-flop cycle, the output will?

4. How many types of sequential circuits are?

5. In D flip-flop, if clock input is LOW, the D input?

48

TRUTH TABLE:

PRESENT
STATE

NEXT STATE OUTPUT(Z)

a=0 a=1 a=0 a=1

S0 S0 S1 0 0

S1 S0 S1 0

RTL SCHEMATIC:

SIMULATED MODEL OUTPUT WAVEFORM:

MEALY

49

EXP NO. 4 BIT SEQUENCE DETECTOR THROUGH

MEALY &MOORE STATE MACHINES

DATE

7

AIM:

To write a VHDL/Verilog code and to generate synthesis report, RTL schematic and to

implement designs using FPGA (Spartan-2).

APPARATUS:

1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.

2. Simulation Tool: Modelsim Simulator.

PROCEDURE:

1. Open Xilinx ISE 9.1i.

2. Create a new source file in a new project with suitable name.

3. Create the file in VHDL/Verilog module.

4. Select the appropriate input and output ports according to the requirements.

5. Type the program and save it and synthesize the process.

6. Select Synthesize XST, check for syntax errors and generate report and RTL schematic.
7. Create another new source.

8. Select source type as Test bench wave form.

9. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after that
double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in

startup options.

3. Select boundary scan in ‘impact window’ after double clicking on ‘configure Device’.

4. In ‘generate programming file’ double clicking on ‘programming file generation report. Bit

file will be generated.

5. Xilinx boundary scan window will appear when the bit file is selected. Right click on Xilinx
component and select program.

6. Programming properties will appear and finally program will be succeeded.

7. Thus the program can be dumped into FPGA kit and finally output can be seen on the kit.

50

VHDL CODE FOR MEALY MACHINE:

library ieee;

use ieee. std_logic_1164 .all;

entity

mealyis

port(a, clk: in std_logic;z: out std_logic);

end mealy;

architecture beh of mealy is

typestate is(s0, s1);

signal p_state,n_state: state;

begin

sm: process(clk)

begin

if rising_edge(clk) then

p_state<=n_state;

end if;

end process sm;

cm: process(p_state,a)

begin

case p_state is

when s0=> if(a='0') then z<='0';

n_state<=p_state;

elsez<=' 0'; n_state<=s1;

end if;

whens1 =>if(a='1')thenz<=' 0';

n_state<=p_state;

elsez<=' 1';

n_state<=s0;

51

end if;

whenothers=>z<='0';

n_state<=s0;

end case;

endprocess cm;

end beh;

TRUTH TABLE:

PRESENT
STATE

NEXT STATE OUTPUT(Z)

a=0 a=1 a=0 a=1

S0 S0 S1 0 0

S1 S2 S1 0 0

S2 S0 S1 1 0

RTL SCHEMATIC:

SIMULATED MODEL OUTPUT WAVEFORM:

MOORE

52

VHDL CODE FOR MOORE MACHINE:

library ieee; use ieee. std_logic_ 1164.all;

entity moore is

port(a, clk:instd_logic; z:outstd_logic);

end moore;

architecture beh of moore is

type state is(s0,s1,s2);

signal n_state,p_state: state;

begin

s:process(clk)

begin

if rising_edge(clk) then

p_state<=n_state;

end i f;end process;

d: process(a,p_state)

begin

case p_state is

when s0=>z<='0';

if(a='0') then

n_state<= p_state;

else

n_state<=s1;

end if;

when s1=>z<='0';

if(a='1') then

n_state<=s2;

else

n_state<=p_state;

end if;

when s2=>z<='1';

n_state<=s0;

endcase;

endprocess;

end beh;

53

RESULT:

CONCLUSION:

VIVA QUESTIONS:

1. What is the use of sequence detector?

2. What is sequence detector moore?

3. What is the differenc between mealy and moore?

4. What is VHDL?

5. What is overlapping sequence detector?

54

PART B
(Back-end Level Design and Implementation)

55

EXP NO.
Design and Implementation Universal Gates

DATE

8

Aim: To design and implementation of universal gates

Software Required: Mentor Graphics-Pyxis, AMS, Calibre

(i). NAND Gate:

Circuit Diagram:

56

PROCEDURE:

1. Connect the Circuit as shown in the circuit diagram using Pyxis Schematic tool

2. Enter into Simulation mode.

3. Setup the Analysis and library.

4. Setup the required analysis.

5. Probe the required Voltages

6. Run the simulation.

7. Observe the waveforms in EZ wave.

Testbench:

57

Output waveforms:

NOR Gate:

58

Testbench:

Output waveforms:

59

Result:

Conclusion:

Viva Questions:

1. How are universal gates implemented?

2. What is the difference between basic gates and universal gates?

3. What is the logic equation for a gate?

4. How many transistor are in Ex-or gate?

5. Which gate is known as equality detector?

60

EXP NO.

Design and Implementation of an Inverter

DATE

9

AIM: To design and Implementation of an Inverter

Software Required: Mentor Graphics - Pyxis, AMS, Calibre.

CIRCUIT DIAGRAM:

61

PROCEDURE:

1. Connect the Circuit as shown in the circuit diagram using Pyxis Schematic tool

2. Enter into Simulation mode.

3. Setup the Analysis and library.

4. Setup the required analysis.

5. Probe the required Voltages

6. Run the simulation.

7. Observe the waveforms in EZ wave.

8. Draw the layout using Pysis Layout.
9. Perform Routing using IRoute

10. Perform DRC, LVS, PEX.

OUTPUT WAVEFORMS:

62

Layout:

Result Verification Environment:

63

Result:

Conclusion:

Viva Questions:

1. why Ex-or gate called an inverter?

2. what is the principle of inverter?

3. What is the basic inverter circuit of CMOS?

4. What are the characteristics of a CMOS inverter?

5. What is threshold voltage of CMOS inverter?

64

EXP NO.

Design and Implementation of Full Adder

DATE

10

AIM: To design and Implementation of an Fulladder

Software Required: Mentor Graphics - Pyxis, AMS, Calibre.

CIRCUIT DIAGRAM:

65

Testbench:

output Waveforms:

66

Result:

Conclusion:

Viva Questions:

1. Which gate is used to design full adder?

2. What are the types of adders ?

3. How many MUX are required for full adder?

4. How do you implement a full adder using half adder?

5. What are the advantages and disadvantages of full adder?

67

EXP NO.

Design and Implementation of Full

Subtractor

DATE

11

AIM: To design and Implementation of an Full-subtractor

Software Required: Mentor Graphics - Pyxis, AMS, Calibre.

CIRCUIT DIAGRAM:

68

Testbench:

69

Output waveforms:

70

Result:

Conclusion:

Viva Questions:

1. What are the advantages and disadvantages of full subtractor?

2. What is the difference between a half and full subtractor?

3. Which decoder is needed for full subtractor?

4. How many NAND gates make a full subtractor and design it?

5. what is the expression for full subtractor?

71

EXP NO.

Design and Implementation of D-Latch

DATE

12

AIM: To design and Implementation of an D-Latch

Software Required: Mentor Graphics - Pyxis, AMS, Calibre.

CIRCUIT DIAGRAM:

72

Testbench:

Output Waveform:

73

Result:

Conclusion:

Viva Questions:

1. What is latch and its types?

2. What are the applications of D-Latch?

3. Why d flip-flop called data latch?

4. How do you convert SR latch to D latch?

5. Write the differences between latch and flip-flop?

74

ADVANCED EXPERIMENT

75

EXP NO. DESIGN AND IMPLEMENTATION

DIFFERENTIAL AMPLIFIER

DATE

13

AIM: To design and Implementation of an Differential Amplifier

Software Required: Mentor Graphics - Pyxis, AMS, Calibre.

CIRCUIT DIAGRAM:

76

Testbench:

OUTPUT WAVEFORMS:

77

Result:

Conclusion:

Viva Questions:

1. Abbreviate CMOS and NMOS?

2. What are applications of Difference amplifier?

3. What Does Differential amplifier do?

4. What are the types of differential amplifier?

5. What are the advantages of differential amplifier?

78

BLOCK DIAGRAM:

OUTPUT WAVEFORMS:

79

EXP NO. DESIGN AND IMPLEMENTATION OF ALU DATE

14

AIM:

To write a VHDL/Verilog code for ALU Design and to generate synthesis report, RTL

schematic and to implement designs using FPGA (Spartan-2).

APPARATUS:

1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.

2. Simulation Tool: Modelsim Simulator.

PROCEDURE:

1. Open Xilinx ISE 9.1i.

2. Create a new source file in a new project with suitable name.

3. Create the file in VHDL/Verilog module.

4. Select the appropriate input and output ports according to the requirements.

5. Type the program and save it and synthesize the process.

6. Select Synthesize XST, check for syntax errors and generate report and RTL schematic.

7. Create another new source.

8. Select source type as Test bench wave form.

9. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package

pins’ and after that double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select
‘JTAG’ clock in startup options.

3. Select boundary scan in ‘impact window’ after double clicking on ‘configure
Device’.

4. In ‘generate programming file’ double clicking on ‘programming file

generation report. Bit file will be generated.

5. Xilinx boundary scan window will appear when the bit file is selected. Right

click on Xilinx component and select program.

6. Programming properties will appear and finally program will be succeeded.
7. Thus the program can be dumped into FPGA kit and finally output can be

seen on the kit.

80

RTL SCHEMATIC:

TRUTH TABLE:

m=0 Logic

s(2) s(1) s(0) Function Operation (bit wise)

0 0 0 ~a NOT
0 0 1 ~b NOT

0 1 0 a&b AND

0 1 1 a|b OR

1 0 0 ~(a&b) NAND

1 0 1 ~(a|b) NOR

1 1 0 a^b EXOR

1 1 1 ~(a^b) EXNOR

m=1 Arithmetic

0 0 0 a Transfer a

0 0 1 a+1 Increment a by 1

0 1 0 a+b Add a and b

0 1 1 a+b+1 Increment the sum of a and b by 1

1 0 0 a+(~b) a plus one’s complement of b

1 0 1 a-b Subtract b from a (i.e. ~b+a+1)
1 1 0 (~a)+b b plus one’s compliment of a

1 1 1 b-a Subtract a from b (i.e. ~a+b+1)

81

VHDL CODE:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity alu4b is

Port (a,b : in STD_LOGIC_VECTOR (3 downto 0);

s : in STD_LOGIC_VECTOR (2 downto 0);

m,clk : in STD_LOGIC;

y: out STD_LOGIC_VECTOR (3 downto 0));

end alu4b;

architectureBehavioral of alu4b is

begin

process(a,b,s,m)

begin

if(clk'event and clk='1')then

elsif(m='0')then

case s is

when"000"=>y<=not a;

when"001"=>y<=not b;

when"010"=>y<=a and b;

when"011"=>y<=a or b;

when"100"=>y<=a nand b;

when"101"=>y<=a nor b;

when"110"=>y<=a xor b;

when"111"=>y<=a xnor b;

when others=>null;

end case;

else

case s is

when"000"=>y<=a;

when"001"=>y<=a+1;

when"010"=>y<=a+b;

when"011"=>y<=a+b+1;

when"100"=>y<=a+(not b);

when"101"=>y<=a-b;

when"110"=>y<=(not a)+b;

when"111"=>y<=b-a;

when others=>y<=b;

end case;

end if;

end process;

end Behavioral;

82

EVICE UTILIZATION SUMMARY:
Number of Slices : 2 out of 960 0%

Number of Slice Flip Flops : 4 out of 1920 0%

Number of 4 input LUTs :

Number of IOs :
Number of bonded IOBs :

4 out of

6
6 out of

1920

66

0%

9%

Number of GCLKs : 1 out of 24 4%

SYNTHESIS REPORT:

RTL Top Level Output File Name : alu.ngr

Top Level Output File Name : alu

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy

Design Statistics

IOs

Cell Usage :
BELS

: NO

: 6

: 4

INV : 1

LUT3 : 1

LUT4 : 2

FlipFlops/Latches : 4

FDC : 4

Clock Buffers : 1

BUFGP : 1

IO Buffers : 5

IBUF : 1
OBUF : 4

RESULT:

CONCLUSION:

83

VIVA QUESTIONS:

1. What is the purpose of ALU?

2. What are the functional blocks of ALU?

3. In a 16-bit ALU, what does the number ‘16’ indicates?

4. Draw the schematic of Subtractor- using adder circuit.

5. What are the advantages of ALU Design?

