PHYSICAL DESIGN LAB MANUAL

T m— AN NSTTUTEQRBNGINEERING.

it ey v INNiaRAER AR R B
, ; 2t aAf

Ly Ilﬁlr"

Department of Electronics & Communication Engineering

J.N.N INSTITUTE OF ENGINEERING

90, USHAA GARDEN, KANNIGAIPAIR, THIRUVALLUR, TAMILNADU-601102
(NAAC ‘A’ Grade | Approved by AICTE | Affiliated to Anna University)

PHYSICAL DESIGN LAB MANUAL

PREPARED

BY
Department of Electronics & Communication Engineering

J.N.N INSTITUTE OF ENGINEERING

90, USHAA GARDEN, KANNIGAIPAIR, THIRUVALLUR, TAMILNADU-601102
(NAAC ‘A’ Grade | Approved by AICTE | Affiliated to Anna University)

J.N.N Institute Of Engineering
Department of Electronics and Communication Engineering

Vision of the institute

Lead the transformation of engineering and management learning experience to educate the next
generation of innovators and entrepreneurs who want to make the world a better place.

Mission of the institute

Mission_1: To develop the required resources and infrastructure and to establish a conducive
ambience for the teaching-learning process.

Mission_2: To nurture professional and ethical values in the students and to instil in them a
spirit of innovation and entrepreneurship.

Mission_3: To encourage a desire for higher learning and research in the students and to equip
them to face global challenges.

Mission_4: To provide opportunities for students to learn job-relevant skills to make them
industry ready.

Mission_5: To interact with industries and other organisations to facilitate transfer of knowledge
and know-how.

Vision of the department

Cultivating innovative and entrepreneurial Electronics and Communication Engineering graduates
to ethically address global challenges through quality teaching and learning practices.
Mission of the department

Mission_1: To facilitate a state-of-the-art teaching-learning process, imparting comprehensive
knowledge in electronics and communication engineering and related interdisciplinary areas.
Mission_2: To foster a sense of curiosity, critical thinking and ethical practices in students,
preparing them for a continuous learning.
Mission_3: To instill innovative team work and industry collaboration for enhancing
entrepreneurial skills, employability —and research capabilities in graduates.
Mission_4: To inculcate ability for delivering novel solutions by taking social and environmental
aspects into consideration.

Programme Outcomes(Pos)

PO _1

Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO 2

Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

PO_3

Design/development of solutions: Design solutions for complex engineering problems and design
system components or processes that meet the specified needs with appropriate consideration for
the public health and safety, and the cultural, societal, and environmental

considerations.

PO_4

Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

PO 5

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

PO _6

The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the
professional engineering practice.

PO_7

Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

PO _8

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
of the engineering practice.

PO 9

Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

PO_10

Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive
clear instructions.

PO _11

Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

PO _12

Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

Programme Specific Outcome(PSOs)

PSO 1

Electronic System Design/Analysis: Apply the fundamental concepts of Electronics and
Communication Engineering to design and analysis of Electronics Systems for applications including
Signal Processing, Communication & Networking, Embedded Systems, VLSI design and

Control Systemes.

PSO 2

Software Tools: Proficiency in specialized software tools and computer programming useful for
the design and analysis of complex electronic systems to meet challenges in contemporary
business environment.

J.N.N INSTITUTE OF ENGINEERING

90, Ushaa Garden, Kannigaipair,Chennai-Periyapalayam Highway,
Tiruvallur, Tamil Nadu 601102

Department of Electronics & Communication Engineering

PART A: FPGA Level Implementation

1. Realization of Logic Gates.

2. 4-bitripple carry and carry look ahead adder using behavioral, dataflow and
structural modeling

3. Design and Implementation of
a) 16:1 mux through 4:1 mux
b) 3:8 decoder realization through 2:4 decoder

Design and Implementation of 8:3 encoder

Design and Implementation of 8-bit parity generator checker

Design and Implementation of different Flip-Flops

Design and Implementation of 4-bit sequence detector through Mealy and
Moore state machine

No vk~

PART B: Back-end Level Design and Implementation

8. Design and Implementation of Universal Gates
9. Design and Implementation of an Inverter

10. Design and Implementation of Full Adder

11. Design and Implementation of Full Subtractor
12. Design and Implementation of D latch

PART C: Advanced Experiments

13. Design and Implementation of Differential Amplifier.

14. Design and Implementation of ALU

CONTENTS

S. NO. NAME OF THE EXPERIMENT PAGE NO
PART A
1. Realization of Logic Gates.
2. 4-bit ripple carry and carry look ahead adder using behavioral
dataflow and structural
modelling
3. Design and Implementation of
A) 16:1 MUX through 4:
B) 3:8 decoder realization 2:4 decoder
4. Design and Implementation of 8:3 encoder
5. Design and Implementation of 8-bit parity generator and checker
6. Design and Implementation of different Flip-Flops
7. Design and Implementation of 4-bit sequence detector through
Mealy and Moore state machine
PART B
8. Design and Implementation of Universal Gates
9. Design and Implementation of an Inverter
10. Design and Implementation of Full Adder
11. Design and Implementation of Full Subtractor
12. Design and Implementation of D latch
Advanced Experiments
13. | Design and Implementation of Differential Amplifier

14.

Design and Implementation of ALU

DOS & DONTS IN LABORATORY

1. While entering the Laboratory, the students should follow the dress code
Wear shoes, White Apron & Female students should tie their hair back).

2. The students should bring their observation note book, practical manual,
record note book, calculator, necessary stationary items and graph sheets if
any for the lab classes without which the students will not be allowed for
doing the practical.

3. All the equipments and components should be handled with utmost care. Any
breakage/damage will be charged.

4. If any damage/breakage is noticed, it should be reported to the instructor
immediately.

5. If a student notices any short circuits, improper wiring and unusual smells
immediately the same thing is to be brought to the notice of technician/lab in
charge.

6. At the end of practical class the apparatus should be returned to the lab
technician and take back the indent slip.

7. Each experiment after completion should be written in the observation note
book and should be corrected by the lab in charge on the same day of the
practical class.

8. Each experiment should be written in the record note book only after getting
signature from the lab in charge in the observation note book.

9. Record should be submitted in the successive lab session after completion of
the experiment.

10. 100% attendance should be maintained for the practical classes.

SCHEME OF EVALUATION

Marks Awarded
S.N Obs Total
o Program Date | Record a om | Viva | At | a0y
(10M)) (5M) (5M)
PART-A
1 | Realization of Logic Gates.
9 4-bit ripple carry and carry look ahead adder
Design and Implementation of
3 A) 16:1 MUX through 4:1
B) 3:8 decoder realization 2:4 decoder
4. | Design and Implementation of 8:3encoder
5 Design and Implementation of 8-bit parity
" | generator and checker
Design and Implementation of different Flip-
6.
Flops
Design and Implementation of 4-bit sequence
7. | detector through Mealy and Moore state
machine
PART-B
Design and Implementation of Universal
8. | Gates
9. | Design and Implementation of an Inverter
10. | Design and Implementation of Full Adder
11. | Designand Implementation of Full Subtractor
12, Design and Implementation of D latch
Advanced Experiments
Design and Implementation of differentitional
13.
3 amplifier
14. | Design and Implementation of ALU

Signature of Lab In-charge

PART A

(FPGA Level Implementation)

CIRCUIT DIAGRAM & TRUTH TABLES

AND GATE

ﬁ_
B_

OR GATE

NOT GATE

NAND GATE

ﬁ_
B_

NOR GATE

TRUTH TABLE

REALIZATION OF ALL LOGIC GATES

To write a VHDL/Verilog code for All Logic Gates and to generate
synthesis report, RTL schematic and to implement designs using FPGA (Spartan-3).
APPARATUS:

1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.

2. Simulation Tool: Modelsim Simulator.

PROCEDURE:

. Open Xilinx ISE 9.1i.

. Create a new source file in a new project with suitable name.

. Create the file in VHDL/Verilog module.

. Select the appropriate input and output ports according to the requirements.

. Type the program and save it and synthesize the process.

. Select Synthesize XST, check for syntax errors and generate report and RTL

schematic.

7. Create another new source.
8. Select source type as Test bench wave form.
9. Associate the test bench to the source.
10. Assign clock and timing details.
11. Give the input waveforms for the source.
12. Save the input waveforms and perform behavioral simulation.
13. The simulated output waveforms window will be shown.
DUMPING PROCESS:
1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after that
double click on ‘implement design’.
2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in
startup options.
3. Select boundary scan in ‘impact window’ after double clicking on ‘configure =~ Device’.
4. In ‘generate programming file’ double clicking on ‘programming file generation report. Bit
file will be generated.
5. Xilinx boundary scan window will appear when the bit file is selected. Right click on Xilinx
component and select program.
6. Programming properties will appear and finally program will be succeeded.
7. Thus the program can be dumped into FPGA kit and finally output can be seen on the kit.

SIMULATED MODEL OUTPUT WAVEFORMS

AND gate

Current Simulation i .
Time: 900 ns L 600
B K

R gate

0.0
Current Simulation i i I
Time: 900 ns i 4010 GO0
I

NOT GATE

Current Simulation
Time: 400 ns

NAND gate

Current Simulation

Time: 900 ns g00

VHDL CODE:

AND GATE :

Library IEEE;

Use IEEE.STD LOGIC 1164.ALL,;

Use IEEE.STD_LOGIC_ARITH.ALL,;

Use IEEE.STD_LOGIC_UNSIGNED.ALL,;

entity Andgate is
Port(a:in STD_LOGIC,;
b:in STD_LOGIC;
y:out STD_LOGIC);
end Andgate ;
architecture Behavioral of Andgate is
begin
y<=aandb;

end Behavioral;

OR GATE::

library IEEE;

use IEEE.STD _LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity orgate is
Port (a:in STD_LOGIC;
b:in STD_LOGIC;
y:out STD_LOGIC);
end orgate ;

architecture Behavioral of orgate is

begin

y<=aorhb;

end Behavioral;

Current Simulation
Time: 900 ns

k00

BLOCK DIAGRAM:

NOT GATE:

library IEEE;
use IEEE.STD_LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL,;
use IEEE.STD_LOGIC _UNSIGNED.ALL;
entity notgate is

Port (a:in STD_LOGIC;

y:out STD_LOGIC);

end notgate ;
architecture Behavioral of notgate is
begin
y <=not a;
end Behavioral,
NAND GATE :

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC _UNSIGNED.ALL;

entity nandgate is
Port(a:in STD_LOGIC;
b:in STD_LOGIC;
y:out STD_LOGIC);
end nandgate ;
architecture Behavioral of nandgate is
begin
y <=anand b;
end Behavioral,
NOR GATE :
__library IEEE;
use IEEE.STD_LOGIC_1164.ALL,;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity norgate is
Port(a:in STD_LOGIC;
b:in STD_LOGIC;
y:out STD_LOGIC);
end norgate ;

architecture Behavioral of norgate is
begin

y <=anorb;

end Behavioral,

TECHNOLOGY SCHEMATIC:

[E=
=

RTL SCHEMATIC:

(B>
[a>

DESIGN SUMMARY:

Number of Slices : 3outof 960 0%
Number of 4 input LUTS : Soutof 1920 0%
Number of 10s D7

Number of bonded 10Bs . 7outof 66 10%

SYNTHESIS REPORT:

RTL Top Level Output File Name : allgates.ngr
Top Level Output File Name . allgates
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy :NO
Design Statistics

#10s 7

Cell Usage :

BELS

INV

LUT2

10 Buffers

IBUF

OBUF

RESULT:

CONCLUSION:

VIVA QUESTIONS:

1. Design all basic gates using 2:1 multiplexer?

. Write the dataflow code for the logic gates

. What are logic gates why the called so?

. Which gates are called as universal gates? What are its advantages?

. What are the applications of logic gates?

CIRCUIT DIAGRAM:

4-BIT RIPPLE CARRY ADDER

53 52

4-BIT CARRY LOOK AHEAD ADDER:

PARTAL PARTAL PARTAL PARTAL
FULL FULL FULL FULL
ADDER 3 ADDER 2 ADDER 1 ADDER O

P2 G2 €2 Pl GI C1

4-Bit Carry Look Ahead Adder

4- BIT RIPPLE CARRYAND CARRY LOOK
AHEAD ADDER

AlM:

To write a VHDL/Verilog code for 4-bit ripple carry and carry look ahead adder and to
generate synthesis report, RTL schematic and to implement designs using FPGA (Spartan-3).
APPARATUS:

1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.
2. Simulation Tool: Modelsim Simulator.
PROCEDURE:

. Open Xilinx ISE 9.1i.

. Create a new source file in a new project with suitable name.

. Create the file in VHDL/Verilog module.

. Select the appropriate input and output ports according to the requirements.
. Type the program and save it and synthesize the process.

. Select Synthesize XST, check for syntax errors and generate report and RTL ~ schematic.
. Create another new source.

. Select source type as Test bench wave form.

. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

1
2
3
4
5
6
7
8
9

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after
that double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in
startup options.

3. Select boundary scan in ‘impact window’ after double clicking on ‘configure ~ device’.

4. In ‘generate programming file’ double clicking on ‘programming file generation report.
Bit file will be generated.

5. Xilinx boundary scan window will appear when the bit file is selected. Right click on
Xilinx component and select program.

6. Programming properties will appear and finally program will be succeeded.

7. Thus the program can be dumped into FPGA kit and finally output can be seen on the Kit.

SIMULATED MODEL OUTPUT WAVEFORM:

4-BIT RIPPLE CARRY ADDER:

”‘p m
b s
”'p; it

4-BIT CARRY LOOK AHEAD ADDER:

'm"""-——-

5 —————

m fomto g om0]

-f ------

H D Lo——————————

A (N G R —

4-BIT RIPPLE CARRY ADDER VHDL CODE:

library IEEE;
use IEEE.STD _LOGIC 1164.ALL;

entity Ripple_Adder is

Port (A:inSTD_LOGIC_VECTOR (3 downto 0);

B:in STD_LOGIC_VECTOR (3 downto 0);

Cin:inSTD_LOGIC;

S:outSTD_LOGIC_VECTOR (3 downto 0); Cout : out STD_LOGIC);
end Ripple_Adder;

architecture Behavioral of Ripple_Adder is

component full_adder_vhdl_code Port (A: inSTD_LOGIC;
B:inSTD _LOGIC;

Cin:inSTD_LOGIC,;

S:out STD _LOGIC;

Cout: outSTD_LOGIC);

end component;

signal c¢1,c2,c3: STD_LOGIC;

begin

FAZL: full_adder_vhdl_code port map(A(0),B(0),Cin,S(0),c1);
FAZ2: full_adder_vhdl_code port map(A(1),B(1),c1,S(1),c2);

FA3: full_adder_vhdl_code port map(A(2),B(2),c2,S(2),c3);
FA4: full_adder_vhdl_code port map(A(3),B(3),c3,S(3),Cout);
end Behavioral;

4-BIT CARRY LOOK AHEAD ADDER VHDL CODE:

Partial Full Adder:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Partial_Full_Adder is
Port (A :in STD_LOGIC;
B:in STD_LOGIC;
Cin:in STD_LOGIC,;
S:outSTD LOGIC;
P:out STD_LOGIC;

G :out STD_LOGIC);

End Partial_Full_Adder;

Architecture Behavioral of Partial _Full _Adder is
begin S <= A xor B xor Cin;

P <= A xor B;

G<=AandB;

end Behavioral;

Carry Look Ahead Adder:

library IEEE;
use IEEE.STD_LOGIC 1164.ALL;

entity Carry_Look_Ahead is

Port (A:inSTD_LOGIC_VECTOR (3 downto 0);

B:in STD_LOGIC_VECTOR (3 downto 0);

Cin:in STD_LOGIC;

S:out STD_LOGIC_VECTOR (3 downto 0);

Cout : out STD_LOGIC);

end Carry_Look_Ahead,;

architecture Behavioral of Carry_Look Ahead is component Partial Full Adder
Port (A :in STD_LOGIC;

B:inSTD_LOGIC;

Cin:in STD_LOGIC;

S:out STD_LOGIC;

P:out STD_LOGIC;

G :out STD_LOGIC);

end component;

signal ¢1,c2,c3: STD_LOGIC;

signal P,G: STD_LOGIC_VECTOR(3 downto 0);

begin

PFAL: Partial_Full_Adder port map(A(0), B(0), Cin, S(0), P(0), G(0));
PFAZ2: Partial_Full_Adder port map(A(1), B(2), c1, S(1), P(1), G(2));
PFAZ3: Partial_Full_Adder port map(A(2), B(2), c2, S(2), P(2), G(2));
PFAA4: Partial_Full_Adder port map(A(3), B(3), c3, S(3), P(3), G(3));

cl <= G(0) OR (P(0) AND Cin);

c2 <= G(1) OR (P(1) AND G(0)) OR (P(1) AND P(0) AND Cin);

c3 <=G(2) OR (P(2) AND G(1)) OR (P(2) AND P(1) AND G(0)) OR (P(2) AND P(1)
AND P(0) AND Cin);

Cout <= G(3) OR (P(3) AND G(2)) OR (P(3) AND P(2) AND G(1)) OR (P(3) AND
P(2) AND P(1) AND G(0)) OR (P(3) AND P(2) AND P(1) AND P(0) AND Cin);

end Behavioral;

RTL SCHEMATIC:

Ripple _Adder:1

full_adder_vhdl code

Cout

Ripple_Adder

TECHNOLOGY SCHEMATIC:

Partial Full Adder for Carry Look Ahead Adder

N
Y

I| || 'y

r

1
L

A

&

", .
B N p
| 7 ey
P ——

N Y

AOR2

DEVICE UTILIZATION SUMMARY:
Selected Device: 3s400pq208-4

Number of Slices: 0 outof 3584 0%
Number of 10s: 14

Number of bonded IOBs: 14 outof 141 9%
SYNTHESIS REPORT:

RTL Top Level Output File Name : Carry_Look Ahead.ngr
Top Level Output File Name : Carry_Look_Ahead
Output Format :NGC

Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics
10s

Cell Usage :

BELS

LUT3

10 Buffers

IBUF

OBUF

Others

Partial_Full_Adder

Selected Device : 3s400pg208-4

Number of Slices . 2 outof 3584 0%
Number of 4 input LUTSs : 4 outof 7168 0%
Number of 10s 0 14

Number of bonded 10Bs : 14 outof 141 9%

SYNTHESIS REPORT

RTL Top Level Output File Name : Ripple_Adder.ngr
Top Level Output File Name : Ripple_Adder
Output Format - NGC
Optimization Goal : Speed

Keep Hierarchy - No

Design Statistics
#10s 14

Cell Usage :

10 Buffers

IBUF

OBUF

Others

full_adder_vhdl_code

RESULT:

CONCLUSION:

VIVA QUESTIONS:

1. Why we use ripple carry adder?

. What is 4-bir carry look ahead adder?

. What is delay of ripple carry adder?

. Why CLA is better than RCA?

Is ripple carry adder and carry look ahead adder same?

CIRCUIT16:1 MUX USING 4:1MUX

coo T
e x

oo
——

L g

—

dooo TT—0_

oo x

>3
> ,l/.r"'
- ‘.-I ssoa

e

= e

oo

oo

<> x

.

PO A
oo a
N

e i 1R

TRUTH TABLE:

2
7
c
-
i

A
]
A
[
A
W

KRl B R K R R R C o olooololol¥
Bl BB PO QO QR KPR HKOOOQO
sl pl ol el bl blel ok K ook K olo
Bl O R QR QR QRO RO RO RO

SIMULATED MODEL OUTPUT WAVEFORM

107000

16:1 MUX USING 4:1MUX

AlIM:

To write a VHDL/Verilog code for 16:1 Mux generate synthesis report, RTL schematic
and to implement designs using FPGA (Spartan-2).

APPARATUS:
1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.

2. Simulation Tool: Modelsim Simulator.
PROCEDURE:

. Open Xilinx ISE 9.1i.

. Create a new source file in a new project with suitable name.

. Create the file in VHDL/Verilog module.

. Select the appropriate input and output ports according to the requirements.
. Type the program and save it and synthesize the process.

. Select Synthesize XST, check for syntax errors and generate report and RTL ~ schematic.
. Create another new source.

. Select source type as Test bench wave form.

. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

1
2
3
4
5
6
7
8
9

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after that
double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in
startup options.

3. Select boundary scan in ‘impact window” after double clicking on ‘configure =~ Device’.

4. In ‘generate programming file’ double clicking on ‘programming file generation report. Bit
file will be generated.

5. Xilinx boundary scan window will appear when the bit file is selected. Right click on Xilinx
component and select program.

6. Programming properties will appear and finally program will be succeeded.

7. Thus the program can be dumped into FPGA kit and finally output can be seen on the Kit.

CIRCUIT DIAGRAM:

==

o
o
o

VHDL CODE FOR 16:1 using 4:1 mux

Library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity kanhe_4x1mux is
port(a,b,c,d : in std_logic;
S0,sl :in std_logic;

g : out std_logic);

end kanhe_4x1mux;

Architecture kanhe_4x1mux1 of kanhe_4x1mux is
Begin

Process(a,b,c,d,s0,s1)

Begin

If sO ='0" and s1 ='0" then q <= a;
Elsif sO ='1' and s1 ='0" then q <= b;
elsif sO ='0" and s1="1"then q <= c;
else q <=d;

end if;

End process;

End kanhe_4x1muxi;

Main program:

Library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity kanhe_16x1mux is

port(a:in std_logic_vector(15 downto 0);

s:in std_logic_vector(3 downto 0);
Z:out std_logic);
End kanhe_ 16x1mux;

Architecture kanhe_16x1muxl of kanhe_16x1mux i
signal z1,z2,z3,2z4:std_logic;

component kanhe_4ximux is
port(a,b,c,d,s0,s1:in std_logic;
Q:out std_logic);

End component;

Begin
: kanhe_4x1mux port map(a(0),a(l),a(2),a(3),s(0),s(1),z1);
m?2: kanhe_4x1mux port map(a(4),a(5),a(6),a(7),s(0),s(1),z2);
: kanhe_4x1mux port map(a(8),a(9),a(10),a(11),s(0),s(1),z3);
. kanhe_4x1mux port map(a(12),a(13),a(14),a(15),s(0),s(1),z4);
: kanhe_4x1mux port map(zl,z2,z3,z4,s(2),s(3),2);

End kanhe 16x1mux1;
23

EXP NO.
3:8 DECODER

3(b)

AlIM:

To write a VHDL/Verilog code for 3x8 Decoder and to generate synthesis report, RTL
schematic and to implement designs using FPGA (Spartan-2).
APPARATUS:
1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.
2. Simulation Tool: Modelsim Simulator.
PROCEDURE:

. Open Xilinx ISE 9.1i.

. Create a new source file in a new project with suitable name.

. Create the file in VHDL/Verilog module.

. Select the appropriate input and output ports according to the requirements.
. Type the program and save it and synthesize the process.

. Select Synthesize XST, check for syntax errors and generate report and RTL ~ schematic.
. Create another new source.

. Select source type as Test bench wave form.

. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

1
2
3
4
5
6
7
8
9

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after
that double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in
startup options.

3. Select boundary scan in ‘impact window” after double clicking on ‘configure device’.

4. In ‘generate programming file’ double clicking on ‘programming file generation report.
Bit file will be generated.

5. Xilinx boundary scan window will appear when the bit file is selected. Right click on
Xilinx component and select program.

6. Programming properties will appear and finally program will be succeeded.

7. Thus the program can be dumped into FPGA kit and finally output can be seen on the kit.

TRUTH TABLE:

Selected enable inputs

inputs

outputs

Gl |G2A L

G2B_L

~

Al

~
~

Y(4) | Y3

~

PFRPrPRPRPRPPRPPPEPXXO

cCcooocoococoo Xk X

cCcooocoocoor XX

HHI—‘HOOOOXXX%

|—\O|—\O|—\O|—\o><><><}§

O|—\|—\|—\|—\|—\|—\HH|—\H/§

PR OOREFRPROO XXX
RPORRPRRRRERPRRERRR
RPRPORRRPRRERPRRERRR

1

PR PRPORRPRRRERREER

1

-

<
PRPRPRPRPRORRPRPRRG

PR PRPRPRORRLRRREER
RPRPRRPRPRRPPRPORRER
PR RRPRPRRPORRER

SIMULATION MODEL OUTPUT WAVEFORM

Current Simulation
Time: 1000 ns

0ns 100 ns 200 ns 300 ns 400 ns S00 ns GO0 ns 700 ns 800 ns 00 r-= 000]
T T T T O T O e T T T O O T

&l

el g2a_l

!l a2b_|

o Bda[z0)

Ino

WO3m1 X Fh2 M FhI N Ihd

A

3NS5 X 3nE N IhT

= BT 0]

ShFF

ShFE N BWFD ¥ 8hWFB X BhF7 ¥ ShEF

 BhDF ¥ EBhBF X 8hiF X BhFF

ST

&1 ¥i6]

allvis]

ol vis)

el vi3]

alivi2]

cllvil]

allvio]

BLOCK DIAGRAM:

VHDL CODE:

VHDL CODE FOR 310 8 DECODER-BEHAVIORAL MODEL :

library IEEE;
use IEEE.STD_LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL,;
use IEEE.STD_LOGIC _UNSIGNED.ALL;
entity dec3to8_beh is
port (gl:in STD_LOGIC;
g2a_l:in STD_LOGIC;
g2b_I:in STD_LOGIC;
a:in STD_LOGIC_VECTOR(2 downto 0);
y_|:out STD_LOGIC_VECTOR(7 downto 0));
end dec3to8_beh;
architecture Behavioral of dec3to8 beh is

begin

process (g1,92a_1,g2b_l,a)
begin

if (g1='0"and g2a_I='0"and g2b_I='0")then
y I<="11111111";
elsif(gl ='1'and g2a_|="0"and g2b_I="0") then
if(a="000")then

y I<="11111110";
elsif(a="001") then

y I<="11111101";
elsif(a="010")then

y I<="11111011";
elsif(a="011")then

y I<="11110111";
elsif(a="100")then

y I<="11101111";
elsif(a="101")then

y I<="11011111";
elsif(a="110")then

y I<="10111111";
elsif(a="111") then

y I<="01111111";

end if;

end if;

end process;

end Behavioral;

TECHNOLOGY SCHEMATIC:

= —+— —=—

fi

A

OO O GOy O G

RTL SCHEMATIC:

=S

Ir

T

Tr

r

DEVICE UTILIZATION SUMMARY::
Number of Slices: 8outof 960 0%

Number of 4 input LUTS: 14 outof 1920 0%
Number of 10s: 14
Number of bonded 10Bs: 1l4outof 66 21%
IOB Flip Flops: 8

SYNTHESIS REPORT:

RTL Top Level Output File Name : decoder.ngr
Top Level Output File Name : decoder

Output Format
Optimization Goal
Keep Hierarchy

: NGC
: Speed
: NO

Design Statistics
#10s 14
Cell Usage:

BELS

LUT2

LUT3

LUT4

FlipFlops/Latches
LD

10 Buffers

IBUF

OBUF

[EE
SN

OO(DIEOOOOOON-D

RESULT:

CONCLUSION:

VIVA QUESTIONS:

1. Write the behavioral code for the IC 74x138.

. Write the VHDL code for the IC 74x138 using CASE statement.

. What does priority encoder mean?

How many outputs will a decimal-to-BCD encoder have?

. Can an encoder be a transducer?

8:3 ENCODER

AlM:

To write a VHDL/Verilog code for 8:3 Encoder and to generate synthesis report, RTL schematic
and to implement designs using FPGA (Spartan-3).
APPARATUS:
1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.
2. Simulation Tool: Modelsim Simulator.
PROCEDURE:

. Open Xilinx ISE 9.1i.

. Create a new source file in a new project with suitable name.

. Create the file in VHDL/Verilog module.

. Select the appropriate input and output ports according to the requirements.
. Type the program and save it and synthesize the process.

. Select Synthesize XST, check for syntax errors and generate report and RTL ~ schematic.
. Create another new source.

. Select source type as Test bench wave form.

. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

1
2
3
4
5
6
7
8
9

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after
that double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in
startup options.

3. Select boundary scan in ‘impact window’ after double clicking on ‘configure ~ device’.

4. In ‘generate programming file’ double clicking on ‘programming file generation report.
Bit file will be generated.

5. Xilinx boundary scan window will appear when the bit file is selected. Right click on
Xilinx component and select program.

6. Programming properties will appear and finally program will be succeeded.

7. Thus the program can be dumped into FPGA kit and finally output can be seen on the kit.

VHDL CODE FOR 8to 3 ENCODER:

library ieee;
use ieee.std_logic_1164.all;

entity e83 is
port(p: in std_logic_vector(7 downto 0);

y: out std_logic_vector(2 downto 0));

end e83;

architecture beh of e83 is
begin

process(p)

begin
casepis

when "00000001"=>y<="000";
when "00000001"=>y<="001";
when "00000100"=>y<="010";
when "00001000"=>y<="011";
when "00010000"=>y<="100";
when "00100000"=>y<="101";
when "01000000"=>y<="110";
when "10000000"=>y<="111";
when others=>y<="UUU";

end case;

end process;

RTL SCHEMATIC:

8TO 3
ENCODER

TRUTH TABLE:

OUTPUTS

o
vl
o
w
I
N
o
—_

Y(2) | Y(1) | Y(0)

RO |O|C |00 |0 |O
O |Rr|C|O|C|OC|C|O
O | O|Rr|OC|IC|OC |0 |O
O |O|C|r|OC|OC|C|O
O |O|C|O|rRr|O|C|O
O ||| |Rr|OC|O
O |O|C|C|C|O|r|O
O |O|C|OC|C OO |-
e = == =)
el Ll k=R =R f =l)
el = =R =)

SIMULATION MODEL OUTPUT WAVEFORM

Edit Wiew Insert Format Tools Window
SHEG®E|| s R@A | DX
F ! Es!

(N[N A] I:I[E'I [I:I oo oon

001 iy | 1N

RESULT:

CONCLUSION:

VIVA QUESTIONS:

1. what is the use of 8:3 encoder?

. What are the types of encoder?

How is an encoder different from a decoder?

How many gates are required for a 8 to 3 encoder?

. Where is encoder used?

CIRCUIT DIAGRAM:

The 8-bit parity generator

even_parity

:

:

odd__parity

®
8]
ki

Igel
vy

TRUTH TABLE:

*
o
Eil

D>

MOT

o

OOr-Ar-ar-Hog

OHOHOOOS
HOHHHOHE
HHOOP—‘OOS

Ok (= Ok o

SIMULATION MODEL OUTPUT WAVEFORM :

0 ps lﬂ.pns 20.pm

14075 ns

1)

11110

PARITY GENERATOR AND CHECKER

AlM:

To write a VHDL/Verilog code for Parity generator and checker synthesis report, RTL
schematic and to implement designs using FPGA (Spartan-3).
APPARATUS:
1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.
2. Simulation Tool: Modelsim Simulator.
PROCEDURE:

. Open Xilinx ISE 9.1i.

. Create a new source file in a new project with suitable name.

. Create the file in VHDL/Verilog module.

. Select the appropriate input and output ports according to the requirements.
. Type the program and save it and synthesize the process.

. Select Synthesize XST, check for syntax errors and generate report and RTL ~ schematic.
. Create another new source.

. Select source type as Test bench wave form.

. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

1
2
3
4
5
6
7
8
9

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after
that double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in
startup options.

3. Select boundary scan in ‘impact window” after double clicking on ‘configure device’.

4. In ‘generate programming file’ double clicking on ‘programming file generation report.
Bit file will be generated.

5. Xilinx boundary scan window will appear when the bit file is selected. Right click on
Xilinx component and select program.

6. Programming properties will appear and finally program will be succeeded.

7. Thus the program can be dumped into FPGA kit and finally output can be seen on the Kit.

CIRCUIT DIAGRAM:

even parity [
input

even parity ermor
indicator

TRUTH TABLE:

DI—'HHHUHE

con-uun-n-ao&

uon—u—aucna
!—'HOGHOGS

unoopoug

SIMULATION MODEL OUTPUT WAVEFORM :

VHDL CODE:

The 8-bit parity generator:

library ieee;
use ieee.std_logic_1164.all;
entity parity is
port(data:in bit_vector(7 downto 0);
even_p,odd_p: out bit);
end parity;
architecture parity_gen of parity is
signal temp : bit_vector(5 downto 0);
begin
temp(0)<=data(0) xor data(1);
temp(1)<=temp(0) xor data(2);
temp(2)<=temp(1) xor data(3);
temp(3)<=temp(2) xor data(4);
temp(4)<=temp(3) xor data(b);
temp(5)<=temp(4) xor data(6);
even_p <=temp(5) xor data(7);
odd_p <= not(temp(5) xor data(7);
end parity_gen;
The 8-bit parity checker :

library ieee;

use ieee.std_logic_1164.all;

entity parity is

port(data:in bit_vector(7 downto 0);
even_p,odd p: out bit);

end parity;

architecture parity_gen of parity is
signal temp : bit_vector(5 downto 0);
begin

temp(0)<=data(0) xor data(1);
temp(1)<=temp(0) xor data(2);
temp(2)<=temp(1) xor data(3);
temp(3)<=temp(2) xor data(4);
temp(4)<=temp(3) xor data(5);
temp(5)<=temp(4) xor data(6);
even_p <= temp(5) xor data(7);
odd_p <=not(temp(5) xor data(7);
end parity_arch;

RESULT:

CONCLUSION:

VIVA QUESTIONS:

. What is parity generator and checker?

. Which gate is ideal for checking the parity of data?

. What is the purpose of parity checker?

. What is a 3-bit parity checker?

. How is parity calaculated?

FLIP FLOPS:

LOGIC DIAGRAM OF IC 74X74

LOGIC DIARAM OF D FLIP FLOP

PR-L

CLR-L

CLK

=
i

D

FLIP FLOPS

AlIM:

To write a VHDL/Verilog code for Flip Flop and to generate synthesis report, RTL schematic
and to implement designs using FPGA (Spartan-2).

APPARATUS:
1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.

2. Simulation Tool: Modelsim Simulator.
PROCEDURE:

. Open Xilinx ISE 9.1i.

. Create a new source file in a new project with suitable name.

. Create the file in VHDL/Verilog module.

. Select the appropriate input and output ports according to the requirements.
. Type the program and save it and synthesize the process.

. Select Synthesize XST, check for syntax errors and generate report and RTL ~ schematic.
. Create another new source.

. Select source type as Test bench wave form.

. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

1
2
3
4
5
6
7
8
9

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after that
double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in
startup options.

3. Select boundary scan in ‘impact window” after double clicking on ‘configure =~ Device’.

4. In ‘generate programming file’ double clicking on ‘programming file generation report. Bit
file will be generated.

5. Xilinx boundary scan window will appear when the bit file is selected. Right click on Xilinx
component and select program.

6. Programming properties will appear and finally program will be succeeded.

7. Thus the program can be dumped into FPGA kit and finally output can be seen on the Kkit.

TRUTH TABLE:

TRUTH TABLE :

Q
4

PR_L

XROXXX| U
QrROROR @
QorRPRO

Z

BLOCK DIAGRAM:

SIMULATED MODEL OUTPUT WAVEFORM:

il I I |EE)[|[| I

ik I N M) R R R RO CNGR DR
i T O [S 1
I I 1 S O

o '

v 3

il I 101 O S
iy N 0

VHDL CODE:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity dfff is

Port (d:in STD_LOGIC_VECTOR(0Oto 1);
clk :in STD_LOGIC_VECTOR;
pr:in STD_LOGIC_VECTOR(0 to 1);
clr:in STD_LOGIC_VECTOR(0 to 1);
g:inout STD_LOGIC VECTOR(0to 1);
ng :inout STD_LOGIC_VECTOR(0to 1));

end DFFF;

architecture structural of DFFF is

component dffl

port(dl,clkl,prl,clrl:instd_logic;

gl,ngql:inout std_logic);

end component;

begin
D1.dff1 port map(d(0),clk, pr(0),clr(0),q(0),nq(0));
D2:dff1 port map(d(1),clk, pr(1),clr(1),q(1),nq(1));

end structural;

TECHNOLOGY SCHEMATIC:

RTLSCHEMATIC:

VHDL CODE FOR COMPONENT D FLIPFLOP:

entity dffl is
Port (d1:in STD_LOGIC;
Clkl:in STD_LOGIC;
Prl:in STD_LOGIC;
Clrl:in STD_LOGIC;
Q1 :inout STD_LOGIC;
Ngl:inout STD_LOGIC);
end dffl;
architecture Behavioral of dffl is
begin
process(dl,prl,clrl,clkl)
begin
if(pr1="0"and clr1="0"then
g1<="1"nql<="1"

elsif(prl="0"and clr1="1")then
g1<='1"nql<='0"
elsif(prl="1"and clr1='0"then
gq1<='0'nql<="1}

else
if(clk1="1"and clk1'event)then
gl<=dl;ngl<=not di,
else
g1<=qg1;ngl<=nql,
end if;
end if;
end process;

end Behavioral;

DEVICE UTILIZATION SUMMARY:':

Number of Slices . 3outof 960 0%
Number of Slice Flip Flops : 2outof 1920 0%
Number of 4 input LUTSs : 5outof 1920 0%
Number of 10s . 6

Number of bonded 10Bs :6outof 66 9%
IOB Flip Flops P2

Number of GCLKSs :loutof 24 4%

SYNTHESIS REPORT:

RTL Top Level Output File Name : dff.ngr
Top Level Output File Name . dff
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO
Design Statistics
#10s

Cell Usage :

BELS

INV

(op]

LUT2
FlipFlops/Latches

FDCP

Clock Buffers
BUFGP

10 Buffers

IBUF

OBUF

NWOIFEFEDNNDND WO

RESULT:

CONCLUSION:

VIVA QUESTIONS:

1. What are the applications of Flip flops?

. The truth table for an S-R flip-flop has how many VALID entries?

. When both inputs of a J-K flip-flop cycle, the output will?

. How many types of sequential circuits are?

In D flip-flop, if clock input is LOW, the D input?

TRUTH TABLE:

PRESENT NEXT STATE | OUTPUT(Z)

STATE

a=0 a=1 a=0 a=1

SO S1
SO S1

RTL SCHEMATIC:

SIMULATED MODEL OUTPUT WAVEFORM:

’ fmeay/a

! Imealck

! neahle

* Imealp_slale
" Imeayin_state

4 BIT SEQUENCE DETECTOR THROUGH
MEALY &MOORE STATE MACHINES

AlIM:

To write a VHDL/Verilog code and to generate synthesis report, RTL schematic and to
implement designs using FPGA (Spartan-2).

APPARATUS:
1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.

2. Simulation Tool: Modelsim Simulator.
PROCEDURE:

. Open Xilinx ISE 9.1i.

. Create a new source file in a new project with suitable name.

. Create the file in VHDL/Verilog module.

. Select the appropriate input and output ports according to the requirements.
. Type the program and save it and synthesize the process.

. Select Synthesize XST, check for syntax errors and generate report and RTL ~ schematic.
. Create another new source.

. Select source type as Test bench wave form.

. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

1
2
3
4
5
6
7
8
9

DUMPING PROCESS:

1. In the process window, go to ‘user constraints’ and select ‘assign package pins’ and after that
double click on ‘implement design’.

2. Select properties by right clicking on ‘generate programming file’. Select ‘JTAG’ clock in
startup options.

3. Select boundary scan in ‘impact window’ after double clicking on ‘configure ~ Device’.

4. In ‘generate programming file’ double clicking on ‘programming file generation report. Bit
file will be generated.

5. Xilinx boundary scan window will appear when the bit file is selected. Right click on Xilinx
component and select program.

6. Programming properties will appear and finally program will be succeeded.

7. Thus the program can be dumped into FPGA kit and finally output can be seen on the kit.

VHDL CODE FOR MEALY MACHINE:

library ieee;
use ieee.std_logic_1164 .all;

entity

mealyis

port(a, clk: in std_logic;z: out std_logic);
end mealy;

architecture beh of mealy is
typestate is(s0,sl);

signal p_state,n_state: state;
begin

sm: process(clk)
begin
if rising_edge(clk) then

p_state<=n_state;
end if;
end process sm;
cm: process(p_state,a)
begin

case p_state is
when s0=> if(a='0") then z<="0";

n_state<=p_state;

elsez<='0";n_state<=s1,;
end if;

whensl=>if(a='1")thenz<="0",

n_state<=p_state;
elsez<="1";

n_state<=s0;

end if;
whenothers=>z<="'0";
n_state<=s0;

end case;
endprocess cm;

end beh:;
TRUTH TABLE:

PRESENT NEXT STATE | OUTPUT(Z)

STATE a=0 a=1 a=0 a=1
SO SO S1 0 0
S1 S2 S1 0
S2 SO S1 1

0
0

RTL SCHEMATIC:

SIMULATED MODEL OUTPUT WAVEFORM:

Imacie/a
Imoore/ck
Imgce/z
Imoore/n_state
Imootelp_state

VHDL CODE FOR MOORE MACHINE:

library ieee; use ieee.std _logic_1164.all;

entity moore is

port(a, clk:instd _logic; z:outstd logic);

end moore;

architecture beh of moore is
type state is(s0,s1,s2);
signal n_state,p_state: state;
begin

s:process(clk)

begin

if rising_edge(clk) then
p_state<=n_state;
end if;end process;

d: process(a,p_state)
begin
case p_state is
when s0=>z<="0";
If(a='0") then
n_state<=p_state;

else

n_state<=s1,
end if;

when s1=>z<='0";
if(a="1") then
n_state<=s2;

else
n_state<=p_state;
end if;

when s2=>z<="1",
n_state<=s0;

endcase;
endprocess;
end beh;

RESULT:

CONCLUSION:

VIVA QUESTIONS:

1. What is the use of sequence detector?

. What is sequence detector moore?

. What is the differenc between mealy and moore?

. What is VHDL?

. What is overlapping sequence detector?

PART B

(Back-end Level Design and Implementation)

Design and Implementation Universal Gates

Aim: To design and implementation of universal gates

Software Required: Mentor Graphics-Pyxis, AMS, Calibre

(i). NAND Gate:

Circuit Diagram:

qnppicaﬁons Maces System %

>

[B-UBY 4448 4 Bdvo
eqs BdE : : /

Pl

e

%

Library
Simulaion

=1

MLNYE | o0

v & |[EN8

[mgc_tree] || & [ract@visi:mgc mee]

PROCEDURE:

. Connect the Circuit as shown in the circuit diagram using Pyxis Schematic tool
. Enter into Simulation mode.
. Setup the Analysis and library.
. Setup the required analysis.
Probe the required Voltages
Run the simulation.
. Observe the waveforms in EZ wave.

Testbench:

) ppications Maces System i

Session
Larary
Simuatian
Draw

Test

Check & Save
Sekct
By Propery
UnaelactAll

Ecr Coject...
Add
Ingtance

[
x|
Bl
0
L
iF}
7
I
s
i
e, o
L&)
T
Lo
"
»

Wire.
Bus/Bundia
Poat

Name

5 | ~ [mgc_tree] [roct@wvlsi:imgc_tree] Q Project Navigator - jmgc_tree/nag/nandftest - P... | sheetl test - Pyxis Schermatic

Output waveforms:

MW Applications Maces System @
TSR
e M4%®BE0OH

Hiz EAN ¥lew Formal Teols Surser Scnematic Windew

R ==

Wayeform List

e | R G

3 vestamest
“) THAN

A

(]|
[te] Toee i[RI I
& | mge_tres B Ezwave 17124 Froo.. | B

NOR Gate:

@) fppiications Places System %

Waikspacel
i ARAn AL (Pom Mgt AT TGP JL RS TS L (1 RE _estt wdti | D
' = marus! 2 subtractor & /test - Pyxis Sche

MGC File Edi Add Select Condaxt Bepod View Windows Sehm Help Genericl3 TDK

[2] sheetl nor_or &5

L sheetl nor_or - Py...

[2 computer [manual

& [mgc_tree] ! [root@visi-imgc_tree] ::‘ Project Navigator - (...

Testbench:

M sppicaions Aaces System @

MGC Filo Edit Add Select Contsst Moport Viow Windows Sebp Holp GenerilZTDK

[3-2988 %44

B sheetl tast @

Simulaton
Draw

Teat

Check & Save
Select
By Prapery

Unzalect All

Inatance
Wie
Bus/Bundle

Part

[mgc_tree] [rocti@visimqc_tree] gﬂ Project Navigator - /... | [sheat] faubtractor ... | B3 / 5 Computer & manual | a sheetd test - Pyxis | ﬂ

Output waveforms:

M npplications Places System i@

Flla Edft Wlaw Forma Tacls Cursar Schematic Windaw
=W &
W eform List
#E 5

Contains |

4

L1

Contains |

Lonan 1500 ELaR] 40004 450K

+ [1] | workspacer |
[wree T[] | J 453 FM
- [mgc_tree] [roatgvisifmige... || 8 Projpct Mavigato. .. B

[sheatl fsubtrac... £ computar ¥ manual | & stest - Fyxis sc... || [l EZwave 13.2a P.. ®

58

Result:

Conclusion:

Viva Questions:

1. How are universal gates implemented?

2. What is the difference between basic gates and universal gates?

3. What is the logic equation for a gate?

4. How many transistor are in Ex-or gate?

5. Which gate is known as equality detector?

Design and Implementation of an Inverter

AIM: To design and Implementation of an Inverter

Software Required: Mentor Graphics - Pyxis, AMS, Calibre.

CIRCUIT DIAGRAM:

File Add Edit Select View Tools Report Window Setup Help Generic Kit TDK dﬂ% \
‘ Sel: 0+ (W das) (cmasinvert(-2. 1186, 1.9224) meeys On ‘
= ObjectEdltor VA X (2 Schematic#1 mylib/c.. &4 ?‘ .o ﬂ v E l
X Qw3 ,(.| session
H‘ [Property ‘Value R G0 R s R B R B B R ® S B OB om Yo% o BEo® Emo¥
B
Lid

Library

Edit

l
|]
‘ Simulg{ion
‘ J
|

Draw
1 Text

[
‘ Check & Save

‘ Select
| ByProperty |
‘ Unselect All |

1hN 20

L=
-

U

Rl

Attribute

“

e

.05 .
0,13

e
LS
-

A 4

Add

Instance

Bus/Bundle :

'p| || Instance

@] 2 [root@hari:~] || §) ICstudio - Project Formanual ﬁi_ Schematic#1 mylib / cmosinverter .. \E

60

PROCEDURE:

Connect the Circuit as shown in the circuit diagram using Pyxis Schematic tool
Enter into Simulation mode.

Setup the Analysis and library.

Setup the required analysis.

Probe the required Voltages

Run the simulation.

Observe the waveforms in EZ wave.

Draw the layout using Pysis Layout.
. Perform Routing using IRoute

10 Perform DRC, LVS, PEX.

©oo N O wWDdDPE

OUTPUT WAVEFORMS:

E Edit ¥iew Format Tools Cursor Schematic Window
f..:-ﬂa.; WEX o~ 3 - o e BB B B AR # .
—

Wan ererm

Layout:

M Appiications Places 5

MGC Bie Eon Asd Select Coptext Connociviy Bepor Miaw Jocls \Windows Salyp Hop G
RSN RE
AT B

BeBa « 3 O88 W

Corteat: ineeiCOOE 0 Process: cureric)2 VAR
Oyrerre ©2tin

== | B

W X 0:mev > incv (0 |

Q0 | et X

=
£
)
£
=
T
4
(3
7]

ERED

Message Area
&

D azziem $)

&l =

Curncr: 9700 7480

Easy Edi
i
Eaper Edit
UG Eot
DLA Layout
DLA Device
EcO
IC Saamon
ICrules
Inetant DRC.
Short Checkar
v i x
Iy
|

o)
=

{mac_tree] [troot@visizmac_tree)

|| B2 Project Navigator

Imac_treemaginvertercy... | f IC 0 Incv > incv (1 - Pyxia Layout

Result Verification Environment:

W Applicauons Flaces System U

3 QP RERELURY)

IGC File

Callbre Interactive - PEX v2012.4_25.21 : layout.pex.runset

Flle Transcript Setup
OR ITS LICENSORS AND IS SUBJECT TO LICENSE TERMS

Rules

Inputs

PEX Netlist File - layout.pex.netiist

_[a]x]][a]x
ngi
|

Elle Edit Options Windows

* File: layout.pex. netlist

{] * Created: Fri Sep 19 11:39:27 2014
* Program “Calibre xRC*
+

Version "v2012.4 25.21°

File View Highlight Tools Window Setup

y 5 I ®, i)
v K & B %D

pt.pex"
Hel |iretr mieur

- Navigator @ || ¥ Extraction Results %5 layout "]

No. | Layout Net Source Net

Results

* Extraction Results VoD

output
input

VDD
OUTPUT
INPUT

& Comparison Results
R Parasitics
ERC
7 ERC Pathchk Polygons
i | ERC Pathchk Nets Rep
Reports
i Extraction Report
£ LVS Report
Rules
'Rules File
View
O nfo
@4 Finder
D Schematics
Setup
4 Options

T s 233 Y

A

%) Find Nets

W& "' Coupling to: @

1_qg N_GROUND M1 s N_GROUND_M1 b NMOS L=1.3e-07 W=2e-06
R Count | C Total (F) | C+CC Total (F) | [b”g N"vDD_M0"s N_vDD M2 b PMOS L=1.3e-07 W=2e-06
(15~ [1 S0704E-12 [1. 50704E-12._|
15 144360E-12 | 1.44360E-12
15 1.89057E-12 | 1.89057E-12
13 2.53545€-12 | 2.53545E-12

Bt.LAYOUT. pxi*

Row| 1

CBC Edit
DLA Layout
DLA Device

ECO

IC Session

_) Note: Popping aiready existing view */ : sheet". Use -new 10 create new shest,

Conclusion:

Viva Questions:

1.

why Ex-or gate called an inverter?

. what is the principle of inverter?

. What is the basic inverter circuit of CMOS?

. What are the characteristics of a CMOS inverter?

. What is threshold voltage of CMOS inverter?

Design and Implementation of Full Adder

AIM: To design and Implementation of an Fulladder

Software Required: Mentor Graphics - Pyxis, AMS, Calibre.

CIRCUIT DIAGRAM:

) appications Places System % 1) saepn)
— — =TT

[EEFLLERECIEL I IE
|_ St 0 (W]} |akir|semsc] el |

CEDIT s — =
— (3 sheatl adder fest 7 | (2] sheat adder ﬂi B ‘ﬂ‘l‘i;

= il
Session !I

Liorary | |
|

Simulatian | |

Check Save ||
Sekct ||
ByPgety ||

UnssieetAl | |

X
i
U
i
9
&)
I
7
i
r‘

-
+

\ AR TR B

Instance i |
Wire i i
BusBunde ||
st |
pot | o ||

Qi 2 mac_tree | [root@visi:fmgc_tree] | f_! Froject Navigator - jmyc_bre... | [[sheet] fsubiractor - Pyxis ... |) | ﬁsheetl adder - Pyxis Schem...|§

Testbench:

@ ipplications Flaces System @

MGG Hie Edl Add Selact Contawi Beport Miew Windows Sefup Help

|B-cuBd wid

lsa 0w

Genanci3 T

kb et | actemste: | aive |

= (29 sheetl adder_test @ |

X 5

Simulation

Draw.

Gheck & Save
Stlest
By Proparty

Unselect All

& - [mgc_tree | [ront@visl-jmgc_ree] 3 project Navigator - mge tre. || £ [sheetl rsubtractor - Pysos .. (| £ ¢ | &3 sheetl adder test - Pyis Sc...| [

output Waveforms:

M spplications Plac

Flla Edit View Format Teol
EFH S b % ol (e R W A MR A
W efmrm List

Lo

1) aarem @)

D =B MA

Danw X = +1B.06T2IM, ¥l - 134545, guitad - 0000
warkspacel

[reee TGS

&) [2 mge_tree

[roct@yvisi:fmge_tree] B8 Project Navigator - fmg [shertl Faubtraciar - P, 1)

3/ avier_teat - Pysis 5c.

]
Bl F7wave 13.7a Production f

Result:

Conclusion:

Viva Questions:

1.

Which gate is used to design full adder?

. What are the types of adders ?

. How many MUX are required for full adder?

. How do you implement a full adder using half adder?

. What are the advantages and disadvantages of full adder?

Design and Implementation of Full
Subtractor

AIM: To design and Implementation of an Full-subtractor

Software Required: Mentor Graphics - Pyxis, AMS, Calibre.

CIRCUIT DIAGRAM:

) rppicetons Paces System 3
>

R-5U88 v iR MgV

S 0 (W|dm) |isbiractor | schemafic | sheetl |

[sheetltestt [[2) sheetl fsublractor &

@O B x

-
+

L PP Bl =

E 3 X g

=

v

4

Message Area

& - 0 moc_ree [root@visi-fmgc_tree] | 58 Project Navigator - img... | 2/) manual [subtractor i sheet] fsubtractar - Py...| id

Testbench:

‘Applicatinns Flaces System %
i

VGG Fle Edl Add Select Coredl Repot Yiew Windows Selip Help

(i) £a0m Q)

Genercid TDK

3688 2+ a@Taase

|su: D¢ (W]chn) (et | seemalc sl

e

— Psheetltestt | [} shestl ubacir 2

TN @O | EE x

-

> |

JE o= €

=

hall

bev8ve ENEE]

[J] Sessn |
by |

Gimulation |

)
Instance
Viire

I Buseine |

| 1 [root@vlsi/mac tree]

8 Prject Navigaor - mg... | 3/

£ manal B3 subfractor || B3 sheetttest -Pyis Sc.. |

Output waveforms:

) appiications Flaces System @

Fle Edil Yiew Format Tools Cursor Schamatic Window
B S X &
Waveromm Lisy
B E
Lo'mmsl
CumEtty Gpen Da
S 4 testLFF
@ O TRAN

[l :::22 E—

I
w3

(u-mm\.l

e [T usc | OFan Uericalh/ 10 Change the REIONT 0T 1HE BR0VE Mo |

| B2 mgc_tree |13 [root@visi:imge_tres] || 55 Project Navigator | @ manual | I subtractor || &3 itestt - Pyais scn B ezwave 13 zaFrod... @

M Applications Places System Y i) 1z1am @

Hla Edi Wkw Format Tools Cursor Schamatlc Wndow Halp

BEWS s wEX[n B

Waveform List

[

Contains

Curentiy Cpen Datahs

5 S SLSR
M1 TRAN

4 RERTEED I*1] | workspace1
[Ee] vree (T[S0) [iz1aem

| [mgc_tre=] } [root@uisiimge_tree] B2 Project Navigator - jmge_treefnagiar. | @ / test - Pyxis Schematic B EZvave 13 2a Froduction '

=

Conclusion:

Viva Questions:

1. What are the advantages and disadvantages of full subtractor?

. What is the difference between a half and full subtractor?

. Which decoder is needed for full subtractor?

. How many NAND gates make a full subtractor and design it?

. what is the expression for full subtractor?

Design and Implementation of D-Latch

AIM: To design and Implementation of an D-Latch

Software Required: Mentor Graphics - Pyxis, AMS, Calibre.

CIRCUIT DIAGRAM:

.ﬁpplicaﬂ'ons Paces System % '_s- 4158 QD

2-o8B6 A8 KW §dve

Bk 0 |W|dw] [dfip | schamalic| sheel

ods I
Bshealdip 2 o8 EOEE]

M Session

Library
Simulation

Draw

Text

Chech & Save
Select
By Proparty
Unselect All
Edit
Mave
Cepy
Dekte
Unda
Fip |}
Rotale | b
Edit Otijecl..
Add
Instance
Wiz
BusBundle
Porl }
Hame
Instance | ¥

Nei

4 ’

Message diea Tix

Moler Acfvated Varianl ofiays.
\ |} Melex Reading versin 1 f sheat ENAG ffifipfschamalic'sheet
Nole: Execating SGENERICTianwana'ia i/schemeric il

g =]} ' [mge_tree] | [rootf@visi: mgc_ree] | £ Project Navigator - jmge_tre.. | {4 sheetl finalsub - Pyxis Sche... | L sheetl dfip -Pyxis Schematic E

71

Testbench:

M pppications Places Systen

MGC B Edat Add Select Contowt Beport Mew Windows Safup Help Ganencld

B-2UBG 11 a\ H egva

Ba: @ (Widen) (o jost | schometa | sheott |

Session
Linrary
Simuation
Draw
—
Ghesk b Save
T seeat ||
By Propery

Unsedect Al

(I8 LN

\

Mams
|| inslance

[mge_tree] [raotg@vist:)] = Project Navigator - imge_treemag et rest -.., | £ sheetl dff_test - Pyxis Schematic

Output Waveform:

M applications Places System

Flla Edt View Farmar Tools Cursor Sthamaiic AIndow

2&Fd S = $mE] 6 HE =0 P HEEDR

Wan elerm List

nE e

.'mmml &

Currsly Open Daranases

=l ART_tesTART o vge]
L1 TRAN

Contains |
|
TRAN

Carta X = 119_'55212Il. Y1 = 102051, cekax = 0.00000

Hl| 1 workspacer
[

o —
[rree [l

- [mgc_tree] ! [roctvisi mge_tree] B2 Froject Navigator - fmge_treeinagid... | B3 / dff_test - Pyxis Schematic @8 EZwave 13.2a Production] &

[1217 PR

Conclusion:

Viva Questions:

1. What is latch and its types?

. What are the applications of D-Latch?

. Why d flip-flop called data latch?

. How do you convert SR latch to D latch?

. Write the differences between latch and flip-flop?

ADVANCED EXPERIMENT

13

DESIGN AND IMPLEMENTATION
DIFFERENTIAL AMPLIFIER

AIM: To design and Implementation of an Differential Amplifier

Software Required: Mentor Graphics - Pyxis, AMS, Calibre.

CIRCUIT DIAGRAM:

‘Apphcaticns PMaces System %

|B-clBe *12B HREva

S 0 (|| (diamo | schemaic | shadll)

316 05

CED | —

— [shestliests

X
i
5
Y
i

MNMAEANE @O |

v |z |2 E

(2] sheetl dfiampl 3

Session ||
Library

Simulaicn

Eit Objet..
Add
Instance
Wie
BusBurdiz
Pot |t

Name

| Instance | ¢

4 [rooti@vlsi:moc_tree]

53 Project Navigatar - imy.. | ©3/ £ manual || B3 subtractor

|| B sheett difampl - Py ... i3

Testbench:

M Appiications Faces Systen @

MOC Bie fot @M Geiemt Gonms Bepan Yew |Undame Rep Hep Genercd 10K
B-curd 2340888 A HHve
* 5 Blid

(53 shoet tastss @

sk) | i | ot | et

oy Bropnry

Unserect Al

»
nowe | »
e Cmpmet
Aaa
instance
vare
Bussunale

Port

{roct@visl imgc_tree] B8 Project Navigator - img. 0 el tasis - pyxie s

OUTPUT WAVEFORMS:

M Applications Places System Y i) 2:2aPm @

Flle Edt ¥iew Format Tools Cursor Sthematic Window

BEEH S s REX e~ B B g As BEL AW BREME

Help
Waneform List
#E B
Contains &
Currenily Open Datab:
E i testss_eqgg

3121 TRAN

o |l H| 1 werkspacer
[

L vvee [[Elt | I [=zzzEm

o[5 mgc_tree I [rocti@visi mgc_tree] |[82 Project Navigatar - (... B3 ¢ [subtractor O3 (testss - Pyxis Sc.. | G0 EZwave 13.2a Proe...| [l

Conclusion:

Viva Questions:

. Abbreviate CMOS and NMQOS?

What are applications of Difference amplifier?

What Does Differential amplifier do?

What are the types of differential amplifier?

What are the advantages of differential amplifier?

BLOCK DIAGRAM:

Carryin .

Data in A[3:0] —?Lp I(‘:]
Data in B[3:0] 4"—'& ‘
4-bit ALU Data out F(3:0]
Operation —— 7
select _ 4

Mode
select —®

Figure 1: Block diagram of the 4-bit ALU.

OUTPUT WAVEFORMS:

Current Simulation
Time: 2000 ns Dns 250 ns 500ns 750ns 1000 ns 1250 ns 1500 ns 1750 n¢

T vt I i I 1 e) e o Y 10 B b I ()
B B30 L X 4ma X 4ns X 4mB X 4hT X 4nt X 4n2 X 4mD X 4nE X
e A |
olv2l X
/vt P |
ol!¥(0] e
BAPERIODI310)| 3. 32100000008
8JIDUTY_CYCLE 0. 05
B BAOFFSET31.0)| 3. 32M00000064
o 330 a4ha
@ BMb[30] a2
o Bl s(20) Y 3n3 3nd 3ns X 3mé 3n7
ol clk I i 1 1
ollm

DESIGN AND IMPLEMENTATION OF ALU

AlIM:

To write a VHDL/Verilog code for ALU Design and to generate synthesis report, RT
schematic and to implement designs using FPGA (Spartan-2).
APPARATUS:
1. Synthesis Tool: Xilinx Project Navigator - ISE 9.1i.
2. Simulation Tool: Modelsim Simulator.
PROCEDURE:

. Open Xilinx ISE 9.1i.

. Create a new source file in a new project with suitable name.

. Create the file in VHDL/Verilog module.

. Select the appropriate input and output ports according to the requirements.
. Type the program and save it and synthesize the process.

. Select Synthesize XST, check for syntax errors and generate report and RTL ~ schematic.
. Create another new source.

. Select source type as Test bench wave form.

. Associate the test bench to the source.

10. Assign clock and timing details.

11. Give the input waveforms for the source.

12. Save the input waveforms and perform behavioral simulation.

13. The simulated output waveforms window will be shown.

1
2
3
4
5
6
7
8
9

DUMPING PROCESS:

. In the process window, go to ‘user constraints’ and select ‘assign package
pins’ and after that double click on ‘implement design’.

. Select properties by right clicking on ‘generate programming file’. Select
‘JTAG’ clock in startup options.

. Select boundary scan in ‘impact window’ after double clicking on ‘configure
Device’.

. In ‘generate programming file’ double clicking on ‘programming file
generation report. Bit file will be generated.

. Xilinx boundary scan window will appear when the bit file is selected. Right
click on Xilinx component and select program.

. Programming properties will appear and finally program will be succeeded.

. Thus the program can be dumped into FPGA kit and finally output can be
seen on the Kkit.

RTL SCHEMATIC:

TRUTH TABLE:

m=0 Logic

Function Operation (bit wise)
~a NOT
~b NOT
a&b AND
ab OR
~(a&b) NAND
~(alb) NOR
a"b EXOR
~(a"b) EXNOR

m=1 Arithmetic

a Transfer a
atl Increment a by 1
atb Addaandb
atbh+1 Increment the sumofaand b by 1
a+(~b) a plus one’s complement of b
a-b Subtract b from a (i.e. ~b+a+1)
(~a)+b b plus one’s compliment of a
b-a Subtract a fromb (i.e. ~a+b+1)

—~
N
—~
-
-~
(=)

PP PRPPRPOOOO
PP OORRPROO
POPRPORORO

PRPPRP P OO0OOO
PRPOORRLROO
PORrRORPRORO

VHDL CODE:

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity aludb is

Port (a,b:in STD _LOGIC VECTOR (3 downto 0);
s:in STD_LOGIC_VECTOR (2 downto 0);
m,clk : in STD_LOGIC,;
y:out STD_LOGIC_VECTOR (3 downto 0));

end alu4b;

architectureBehavioral of alu4b is

begin

process(a,b,s,m)

begin

if(clk'event and clk="1")then

elsif(m="'0")then

case s is

when"000"=>y<=not a;

when"001"=>y<=not b;

when"010"=>y<=a and b;

when"011"=>y<=a or b;

when"100"=>y<=a nand b;

when"101"=>y<=a nor b;

when"110"=>y<=a xor b;

when"111"=>y<=a xnor b;

when others=>null;

end case;

else

case s is

when"000"=>y<=3;

when"001"=>y<=a+1,;

when"010"=>y<=a+b;

when"011"=>y<=a+b+1;

when"100"=>y<=a+(not b);

when"101"=>y<=a-b;

when"110"=>y<=(not a)+b;

when"111"=>y<=b-a;

when others=>y<=b;

end case;

end if;

end process;

end Behavioral;

EVICE UTILIZATION SUMMARY:

Number of Slices . 2outof 960 0%
Number of Slice Flip Flops : 4doutof 1920 0%
Number of 4 input LUTSs » 4doutof 1920 0%
Number of 10s : 6

Number of bonded 10Bs . 6outof 66 9%

Number of GCLKSs : loutof 24 4%

SYNTHESIS REPORT:

RTL Top Level Output File Name : alu.ngr
Top Level Output File Name - alu
Output Format :NGC
Optimization Goal : Speed
Keep Hierarchy :NO
Design Statistics
#10s

Cell Usage :

BELS

INV

LUT3

LUT4

FlipFlops/Latches
FDC

Clock Buffers

BUFGP

10 Buffers

IBUF

OBUF

(op]

AR URPRPAEARMNRLREP,DN

RESULT:

CONCLUSION:

VIVA QUESTIONS:

1. What is the purpose of ALU?

2. What are the functional blocks of ALU?

3. Ina16-bit ALU, what does the number €16’ indicates?

4. Draw the schematic of Subtractor- using adder circuit.

5. What are the advantages of ALU Design?

