
INTERNET OF THINGS LAB MANUAL

Department of Electronics & Communication Engineering

J.N.N INSTITUTE OF ENGINEERING
90, USHAA GARDEN, KANNIGAIPAIR,THIRUVALLUR,TAMILNADU-601102

(NAAC ‘A’ Grade | Approved by AICTE | Affiliated to Anna University)

INTERNET OF THINGS LAB MANUAL

PREPARED

 BY

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

J.N.N INSTITUTE OF ENGINEERING
90, USHAA GARDEN, KANNIGAIPAIR,THIRUVALLUR,TAMILNADU-601102

(NAAC ‘A’ Grade | Approved by AICTE | Affiliated to Anna University)

INTERNET OF THINGS LAB MANUAL

S.No List of Experiments

 Experiments using ESP32 / Arduino

 Serial Monitor, LED, Servo Motor – Controlling:

1 Controlling actuators through Serial Monitor. Creating different led patterns and
controlling them using push button switches. Controlling servo motor with the help of
joystick.

 Distance Measurement of an object:

2 Calculate the distance to an object with the help of an ultrasonic sensor and display it on
an LCD

 LDR Sensor, Alarm and temperature, humidity measurement:

3 (a)Controlling relay state based on ambient light levels using LDR sensor.(b)Basic Burglar
alarm security system with the help of PIR sensor and buzzer.
(c)Displaying humidity and temperature values on LCD

 Experiments using Raspberry Pi / Arduino

4 (a)Controlling relay state based on input from IR sensors
(b)Interfacing stepper motor with R-Pi
(c)Advanced burglar alarm security system with the help of PIR sensor, buzzer and
keypad. (Alarm gets disabled if correct keypad password is entered)
(d)Automated LED light control based on input from PIR (to detect if people are present)
and LDR (ambient light level)

 IOT Framework:

5 Upload humidity & temperature data to Thing Speak, periodically logging ambient light
level to Thing Speak

6 Controlling LEDs, relay & buzzer using Blynk app

 HTTP Based:

7 Introduction to HTTP. Hosting a basic server from the ESP32 to control various digital
based actuators (led, buzzer, relay) from a simple web page.

8 Displaying various sensor readings on a simple web page hosted on the ESP32

 MQTT Based:

9 Controlling LEDs/Motors from an Android/Web app, Controlling AC Appliances from an
android/web app with the help of relay.

10 Displaying humidity and temperature data on a web-based application

 UAV / Drone:

11 (a)Demonstration of UAV elements, Flight Controller
(b)Mission Planner flight planning design

12 Python program to read GPS coordinates from Flight Controller

J.N.N INSTITUTE OF ENGINEERING
90, USHAA GARDEN, KANNIGAIPAIR,THIRUVALLUR,TAMILNADU-601102

(NAAC ‘A’ Grade | Approved by AICTE | Affiliated to Anna University)

Department of Electronics and Communication Engineering

Vision of the institute

Lead the transformation of engineering and management learning experience to educate the

next generation of innovators and entrepreneurs who want to make the world a better place.

Mission of the institute

Mission_1: To develop the required resources and infrastructure and to establish a

conducive ambience for the teaching-learning process.

Mission_2: To nurture professional and ethical values in the students and to instil in them

a spirit of innovation and entrepreneurship.

Mission_3: To encourage a desire for higher learning and research in the students and to

equip them to face global challenges.

Mission_4: To provide opportunities for students to learn job-relevant skills to make them

industry ready.

Mission_5: To interact with industries and other organisations to facilitate transfer of

knowledge and know-how.

Vision of the department

Cultivating innovative and entrepreneurial Electronics and Communication Engineering

graduates to ethically address global challenges through quality teaching and learning

practices.

Mission of the department

Mission_1: To facilitate a state-of-the-art teaching-learning process, imparting
comprehensive knowledge in electronics and communication engineering and related
interdisciplinary areas.
Mission_2: To foster a sense of curiosity, critical thinking and ethical practices in students,
preparing them for a continuous learning.
Mission_3: To instill innovative team work and industry collaboration for enhancing
entrepreneurial skills, employability and research capabilities in graduates.
Mission_4: To inculcate ability for delivering novel solutions by taking social and
environmental aspects into consideration.

Programme Outcomes(Pos)

PO_1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

PO_2 Problem analysis: Identify, formulate, review research literature, and analyze
complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO_3 Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and
environmental
considerations.

PO_4 Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the
information to provide valid conclusions.

PO_5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern
engineering and IT tools including prediction and modeling to complex engineering
activities with an understanding of the limitations.

PO_6 The engineer and society: Apply reasoning informed by the contextual knowledge to
assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
to the professional engineering practice.

PO_7 Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need
for sustainable development.

PO_8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms
of the engineering practice.

PO_9 Individual and team work: Function effectively as an individual, and as a member or
leader in
diverse teams, and in multidisciplinary settings.

PO_10 Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give
and receive
clear instructions.

PO_11 Project management and finance: Demonstrate knowledge and understanding of
the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

PO_12 Life-long learning: Recognize the need for, and have the preparation and ability to engage
in
independent and life-long learning in the broadest context of technological change.

Programme Specific Outcome(PSOs)

PSO_1

Electronic System Design/Analysis: Apply the fundamental concepts of Electronics and
Communication Engineering to design and analysis of Electronics Systems for applications including
Signal Processing, Communication & Networking, Embedded Systems, VLSI design and
Control Systems.

PSO_2

Software Tools: Proficiency in specialized software tools and computer programming useful
for
the design and analysis of complex electronic systems to meet challenges in
contemporary business environment.

INTERNET OF THINGS LAB MANUAL

INDEX

S.No List of Experiments Page No

1

Controlling actuators through Serial Monitor. Creating
different led patterns and controlling them using push button
switches. Controlling servo motor with the help of
joystick.

1

2
Calculate the distance to an object with the help of an
ultrasonic sensor and display it on an LCD

7

3

(a) Controlling relay state based on ambient light levels using
LDR sensor.
(b) Basic Burglar alarm security system with the help of PIR
sensor and buzzer.
(c) Displaying humidity and temperature values on LCD

11

15

20

4

(a) Controlling relay state based on input from IR sensors
(b)Interfacing stepper motor with R-Pi
(c)Advanced burglar alarm security system with the help of
PIR sensor, buzzer and keypad. (Alarm gets disabled if correct
keypad password is entered)
(d)Automated LED light control based on input from PIR (to
detect if people are present) and LDR (ambient light level)

23
27
30

34

5
Upload humidity & temperature data to Thing Speak,
periodically logging ambient light level to Thing Speak

38

6 Controlling LEDs, relay & buzzer using Blynk app 45

7
Introduction to HTTP. Hosting a basic server from the ESP32
to control various digital based actuators (led, buzzer, relay)
from a simple web page.

50

8
Displaying various sensor readings on a simple web page
hosted on the ESP32

64

9
Controlling LEDs/Motors from an Android/Web app,
Controlling AC Appliances from an android/web app with the
help of relay.

75

10
Displaying humidity and temperature data on a web-based
application

81

11
Additional Experiment-1

Demonstration of UAV elements, Flight Controller
A-1

12
Additional Experiment-2

Mission Planner flight planning design
A-2

13
Python program to read GPS coordinates from Flight
Controller

A-3

GENERAL INSTRUCTIONS FOR LABORATORY CLASSES

DO‘S

1. Without Prior permission do not enter into the Laboratory.

2. While entering into the LAB students should wear their ID cards.

3. The Students should come with proper uniform.

4. The Students should sign in the LOGIN REGISTER before entering into the Laboratory.

5. The Students should come with observation and record note book to the Laboratory.

6. The Students should maintain silence inside the Laboratory.

7. After completing the Laboratory exercise, make sure to shut down the system properly.

DONT‘S

1. Students bringing the bags inside the Laboratory.

2. Students wearing slippers/shoes insides the Laboratory.

3. Students using the Computers in an improper way.

4. Students scribbling on the desk and mishandling the chairs.

5. Students using mobile phones inside the Laboratory.

6. Students making noise inside the Laboratory.

SCHEME OF EVALUATION

S.No

Program

Date
Marks Awarded Total

(30M) Record
(10M)

Observation
(10M)

VivaVoce
(5M)

Attendance
(5M)

1

Controlling actuators
through Serial Monitor.
Creating different led
patterns and controlling
them using push button
switches. Controlling
servo motor with the help
of joystick.

2

Calculate the distance to
an object with the help of
an ultrasonic sensor and
display it on an LCD

3

(a)Controlling relay state
based on ambient light
levels using LDR sensor.
(b)Basic Burglar alarm
security system with the
help of PIRsensor and
buzzer.
(c)Displaying humidity
and temperature values
on LCD

4

(a)Controlling relay state
based on input from IR
sensors
(b)Interfacing stepper
motor with R-Pi
(c)Advanced burglar
alarm security system
with the help of PIR
sensor, buzzer and
keypad. (Alarm gets
disabled if correct
keypad password is
entered)
(d)Automated LED light
control based on input
from PIR (to detect if
people are present) and
LDR (ambient light level)

5

Upload humidity &
temperature data to Thing
Speak, periodically
logging ambient light

 level to Thing Speak

6
Controlling LEDs, relay
& buzzer using Blynk
app

7

Introduction to
HTTP.Hosting a basic
server from the ESP32 to
control various digital
based actuators (led,
buzzer, relay) from a
simple web page.

8

Displaying various
sensor readings on a
simple web page hosted
on the ESP32library

classes/API.

9

Controlling LEDs/Motors
from an Android/Web
app, Controlling AC
Appliances from an
android/web app with
the help of relay.

10
Displaying humidity and
temperature data on a
web-based application

11
Demonstration of UAV
elements, Flight
Controller

12
Mission Planner flight
planning design

13
Python program to read
GPS coordinates from
Flight Controller

Signature of Lab In-charge

1

INDEX

LIST OF EXPERIMENTS

S.No. Program Page No.

 Experiments using ESP32 / Arduino

Serial Monitor, LED, Servo Motor –Controlling:

1
Controlling actuators through Serial Monitor. Creating different
led patterns and controlling them using push button switches.
Controlling servo motor with the help of joystick.

1

 Distance Measurement of an object:

2
Calculate the distance to an object with the help of an ultrasonic
sensor and display it on an LCD

7

 LDR Sensor, Alarm and temperature, humidity measurement:

 (a)Controlling relay state based on ambient light levels using LDR
sensor.

11

3 (b)Basic Burglar alarm security system with the help of PIR 15
 sensor and buzzer.

 (c)Displaying humidity and temperature values on LCD 20
 Experiments using Raspberry Pi / Arduino

 (a)Controlling relay state based on input from IR sensors 23
 (b)Interfacing stepper motor with R-Pi 27
 (c)Advanced burglar alarm security system with the help of PIR 30

4 sensor, buzzer and keypad. (Alarm gets disabled if correct keypad
password is entered)

 (d)Automated LED light control based on input from PIR (to 34
 detect if people are present) and LDR (ambient light level)

 IOT Framework:

5
Upload humidity & temperature data to Thing Speak, periodically
logging ambient light level to Thing Speak

38

6 Controlling LEDs, relay & buzzer using Blynk app 45

 HTTP Based:

7
Introduction to HTTP. Hosting a basic server from the ESP32 to
control various digital based actuators (led, buzzer, relay) from a
simple web page.

50

8
Displaying various sensor readings on a simple web page hosted
on the ESP32

64

 MQTT Based:

9
Controlling LEDs/Motors from an Android/Web app, Controlling
AC Appliances from an android/web app with the help of relay.

75

10
Displaying humidity and temperature data on a web-based
application

81

 UAV / Drone:

11
(a)Demonstration of UAV elements, Flight Controller
(b)Mission Planner flight planning design

A-1

12 Python program to read GPS coordinates from Flight Controller A-2

2

Experiment-1

Aim: Controlling actuators through Serial Monitor. Creating different led patterns and

controlling them using push button switches. Controlling servo motor with the help of

joystick.

Circuit Diagram

The hardware part of this project is very easy to make. First, connect the joystick
module with the Arduino. The connections for the joystick module and the Arduino
are as follows:

 Connect the VCC on the joystick module with the 5V pin on the Arduino
 Connect the GND pin on the joystick module with the GND on the Arduino
 Connect the VER pin on the joystick module with the A0 on the Arduino
 Connect the HOR pin on the joystick module with the A1 on the Arduino

After that, connect the servo motors with the Arduino. The connections for servo
motors with Arduino are as follows:

 Connect the black wire on both the servo motors with the GND on the Arduino
 Connect the red wire on both the servo motors with the 5V pin on the Arduino
 Connect the yellow wire on the first motor with pin 8 on the Arduino
 Connect the yellow wire on the second motor with pin 9 on the Arduino

3

Working Procedure

When the joystick module moves in the horizontal or in the vertical direction, it gives

us values from 0 to 1023. So we can apply a condition in the code that if the value is

less than 300 or greater than 700, then the servos will move.

When the joystick is moved in the horizontal direction, the first servo will move

towards right or left and upon moving the joystick in the vertical direction, the second

servo will move towards the right or left.

Arduino Code:

#include
Servo servo1;
Servo servo2;
int x_key = A1;
int y_key = A0;
int x_pos;
int y_pos;
int servo1_pin = 8;
int servo2_pin = 9;
int initial_position = 90;
int initial_position1 = 90;

void setup () {
Serial.begin (9600) ;
servo1.attach (servo1_pin) ;
servo2.attach (servo2_pin) ;
servo1.write (initial_position);
servo2.write (initial_position1);
pinMode (x_key, INPUT) ;
pinMode (y_key, INPUT) ;
}

void loop () {
x_pos = analogRead (x_key) ;
y_pos = analogRead (y_key) ;

if (x_pos<300){
if (initial_position< 10) { } else{ initial_position = initial_position - 20; servo1.write (
initial_position) ; delay (100) ; } } if (x_pos> 700){
if (initial_position> 180)
{
}
else{
initial_position = initial_position + 20;
servo1.write (initial_position) ;
delay (100) ;
}

4

}

if (y_pos<300){
if (initial_position1 < 10) { } else{ initial_position1 = initial_position1 - 20; servo2.write
(initial_position1) ; delay (100) ; } } if (y_pos> 700){
if (initial_position1 > 180)
{
}
else{
initial_position1 = initial_position1 + 20;
servo2.write (initial_position1) ;
delay (100) ;
}
}
}

Code Explanation

First of all, we included the library for the servo motor which will help us with making
the code easier. Then, we initialized two variables, one for each of the two servo motors
which will help us in using the library functions.

#include
Servo servo1;
Servo servo2;

Then, we initialized the pins where we have connected the vertical and horizontal
pins on the joystick module and also the signal pins on the servos.

intx_key= A1;
inty_key= A0;
intx_pos;
inty_pos;
intservo1_pin=8;
intservo2_pin=9;
intinitial_position=90;
intinitial_position1=90;

Then we tell the Arduino where we have connected the servo pins and also moved the
servo motors at the initial position, which is 90 degrees. After that, we declared both
the vertical and horizontal pins on joystick module as the input pins.

servo1.attach (servo1_pin) ;
servo2.attach (servo2_pin) ;
servo1.write (initial_position);
servo2.write (initial_position1);
pinMode (x_key, INPUT) ;
pinMode (y_key, INPUT) ;

5

In the loop function, we read the values for the horizontal and the vertical position
from the joystick module and saved these in the variables. Then we applied a condition
that if the value for the horizontal position is less than 300, then the first servo will
move towards the right.

x_pos = analogRead (x_key) ;
y_pos = analogRead (y_key) ;
if (x_pos<300){
if (initial_position< 10)
{
}
else{
initial_position = initial_position - 20;
servo1.write (initial_position) ;
delay (100) ;
}
}

If the value for the horizontal position is greater than 700, then the servo will move
towards the left. Similarly for the vertical position of the joystick module, if the value
is less than 300, then the second servo will move towards the left, and if the value is greater
than 700, then the second servo will move towards the right.

if (x_pos>700){
if (initial_position> 180)
{
}
else{
initial_position = initial_position + 20;
servo1.write (initial_position) ;
delay (100) ;
}
}

Output:

6

Result: The above experiment is designed and executed successfully.

7

Experiment – 2

Aim: Calculate the distance to an object with the help of an ultrasonic sensor and

display it on an LCD

Procedure:

In this experiment, we are going to interface Ultrasonic sensor HC-SR04 with Arduino

and LCD Display. The ultrasonic sensor is used to measure the distance. It acts as a

Sonar. It sends an ultrasonic wave of a certain frequency that comes back after hitting

the object and calculates the time traveled by it. So let’s learn about Distance

Measurement Using Arduino & HC-SR04 Ultrasonic Sensor.

Components Required:

1. Arduino Uno Board

2. Ultrasonic Sensor HC-SR04

3. 16*2 LCD Display

4. Breadboard

5. Connecting Wires

6. 5V Power Supply

Ultrasonic Sensor HC-SR04:

Description:

The HC-SR04 ultrasonic sensor uses sonar to determine the distance to an object like

bats do. It offers excellent non-contact range detection with high accuracy and stable

readings in an easy-to-use package.

Distance Measurement Using Arduino & HC-SR04

From 2cm to 400 cm or 1” to 13 feet. Its operation is not affected by sunlight or black

material like sharp rangefinders are (although acoustically soft materials like cloth can

be difficult to detect). It comes complete with the ultrasonic transmitter and a receiver

module.

The specifications of the ultrasonic distance sensor HC-SR04 are below:

1. Minimum measuring range – 2 cm

2. Maximum measuring range : 400 cm or 4 meter

3. Accuracy : 3 mm

4. Operating Voltage: +5V

5. Operating Current: 15mA

6. Working Frequency: 40 KHz

8

7. Trigger Input signal: 10us pulse

8. Measuring angle: 15 degrees

Pins:

1. VCC: +5VDC

2. Trig: Trigger (INPUT)

3. Echo: Echo (OUTPUT)

4. GND: GND

Working Procedure:

Ultrasonic sensors emit short, high-frequency sound pulses at regular intervals. These
propagate in the air at the velocity of sound. If they strike an object, then they are
reflected back as echo signals to the sensor, which itself computes the distance to the
target based on the time-span between emitting the signal and receiving the echo.

We will have to convert this time into cm to calculate the distance traveled. We will
use the following equation to calculate the distance.

S = v * t

The ultrasonic wave is basically a sound wave that travels at a speed of 340 m/s (0.034

cm/s). The ultrasonic sensor is measuring the time it takes to hit the object and then

come back but we need only time that it takes to hit the object. So, we will divide it by

2.

https://how2electronics.com/wp-content/uploads/2018/11/Ultrasonic-sensor-working.jpg

9

Circuit Diagram and Connections

Trig and Echo pins of the ultrasonic sensor are connected to digital pin 3 & 2 of
Arduino. VCC pin of the ultrasonic sensor is connected to the 5v pin of Arduino while
the GND pin is connected to the GND of Arduino. SDA & SCL pin of the I2C module
is connected to the A4 & A5 pin of Arduino while VCC and GND pins are connected to
the 5V & GND pin of Arduino.

Copy this code then compile and upload it to your Arduino board.

Arduino Code:

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27, 16, 2);

const int trigPin = 3;

const int echoPin = 2;

long duration;

int distance;

void setup() {

lcd.begin(); // Initializes the interface to the LCD display

lcd.backlight();

pinMode(trigPin, OUTPUT);

pinMode(echoPin, INPUT);

Serial.begin(9600);

}

10

void loop() {

lcd.clear();

digitalWrite(trigPin, LOW);

delayMicroseconds(2);

digitalWrite(trigPin, HIGH);

delayMicroseconds(10);

digitalWrite(trigPin, LOW);

duration = pulseIn(echoPin, HIGH);

distance = duration * 0.0340 / 2;

Serial.println("Distance");

Serial.println(distance);

lcd.setCursor(0, 0);

lcd.print("Distance: ");

lcd.print(distance);

lcd.print("cm");

delay(1000);

}

Output:

Result: The above experiment is designed and executed successfully using

Arduino board.

11

Experiment – 3(a)

 Aim: Controlling relay state based on ambient light levels using LDR sensor.

Procedure: In this circuit, we are making a Light Sensor using LDR with Arduino

to control a bulb/CFL as per light condition of the room or outside area.

Components Required:

 Arduino UNO

 LDR (Light Dependent Resistor)

 Resistor (100k-1;330ohm-1)

 LED – 1

 Relay module – 5v

 Bulb/CFL

 Connecting wires

 Breadboard

Circuit Diagram and Connections

12

LDR is Light Dependent Resistor. LDRs are made from semiconductor materials to
enable them to have their light-sensitive properties. There are many types but one
material is popular and it is cadmium sulfide (CdS). These LDRs or PHOTO RESISTORS
works on the principle of “Photo Conductivity”. Now what this principle says is, whenever
light falls on the surface of the LDR (in this case) the conductance of the element increases
or in other words, the resistance of the LDR falls when the light falls on the surface of the
LDR. This property of the decrease in resistance for the LDR is achieved because it is a
property of semiconductor material used on the surface.

Working of LDR controlled LED using Arduino

As per the circuit diagram, we have made a voltage divider circuit using LDR and 100k
resistor. The voltage divider output is feed to the analog pin of the Arduino. The analog
Pin senses the voltage and gives some analog value to Arduino. The analog value
changes according to the resistance of LDR. So, as the light falls on the LDR the
resistance of it gets decreased and hence the voltage value increase.

Intensity of light ↓ - Resistance↑ - Voltage at analog pin↓ - Light turns ON

As per the Arduino code, if the analog value falls below 700 we consider it as dark
and the light turns ON. If the value comes above 700 we consider it as bright and the light
turns OFF.

Controlling Relay using LDR with Arduino

13

Instead of controlling an LED according to the brightness and darkness, we

can control our home lights or any electrical equipment. All we have to do is

connect a relay module and set the parameter to turn ON and OFF the any AC

appliance according to the intensity of the light. If the value falls below 700,

which means it Dark, then the relay operates and the lights turns ON. If the value

is greater than 700, which means its day or bright, then the relay will not operate

and the lights remain OFF.

Arduino Code

14

#define relay 10
int LED = 9;
int LDR = A0;
void setup()
{
Serial.begin(9600);
pinMode(LED, OUTPUT);
pinMode(relay, OUTPUT);
pinMode(LDR, INPUT);
}
void loop() {
int LDRValue = analogRead(LDR);
Serial.print(“sensor = “);
Serial.print(LDRValue);
if (LDRValue<=700)
{
digitalWrite(LED, HIGH);
digitalWrite(relay, HIGH);
Serial.println(“It’s Dark Outside; Lights status: ON”);
}
else
{
digitalWrite(LED, LOW);
digitalWrite(relay, LOW);
Serial.println(“It’s Bright Outside; Lights status: OFF”);
}
}

Output:

Result: The above experiment is designed and executed successfully using Arduino

Board.

15

Experiment – 3(b)

 Aim: Basic Burglar alarm security system with the help of PIR sensor and buzzer using Arduino

Procedure

A PIR sensor is generally known to the world as motion sensor or motion detector.A

PIR sensor do not emit any kind of radiation for detection purposes but they just

measure the infra red radiation emitted by other objects inside its field or range of

measurement.

A PIR sensor module has only 3 pins – one is Vcc which is a +5 volts input, a ground

pin and finally the digital output pin. Connect +5V from Arduino to Vcc of PIR sensor

module, connect a GND from Arduino to ground of PIR sensor and finally connect the

output pin (marked as ‘out’) to any digital pin of arduino. In our circuit diagram, we

have connected it to pin 7 of arduino.

16

PIR Sensor – is the heart of this simple burglar alarm circuit using arduino. A PIR sensor

– is basically a motion sensor or a motion detector which identifies any object

17

that moves inside its range of view. PIR sensor identifies infra red radiations emitted

by any object under its radar range.

Buzzer – is used to create a sound alarm when ever a movement is identified inside

the range of PIR sensor. A transistor 2N2222 is used to drive the buzzer. The

maximum current that can be sourced or sinked from an arduino pin is 20mA (the

total current being 200mA from different pins). But the buzzer will need more than

just 20mA for its proper functioning. So how to give the necessary current required

fir buzzer ? We use switching transistor 2N222 for this purpose. It can act as a switch

and at the same time it provides the required current amplification.

A 2N2222 transistor with a gain of 100 can give up to 1A current at its output. Another

purpose of using a transistor in between arduino pin and buzzer is isolation. A short

circuit of the buzzer will destroy only the collector – emitter junction of transistor.

Since there is isolation at the base region of transistor (base is connected to arduino),

the destruction of collector-emitter junction will not affect base and hence our arduino

will be safe from getting burned! The 100 ohms resistor at base is used to limit base

current of transistor.

Switch – a push button switch is used to reset the burglar alarm once its activated.

The capacitor is used for bypassing bouncing effects of a switch (debouncing

capacitor).

Burglar Alarm using Arduino – Circuit Diagram

Connections

18

Arduino – Pin 7 – Output of PIR Sensor | Pin 6 – Push button switch | Pin 8 –
Buzzer

Buzzer – + pin to Vcc (5 volts) | other pin to collector side of 2N2222

Transistor – 2N2222 – NPN – Collector to Buzzer | Emitter to Ground | Base to
Arduino through 100 Ohm Resistor

Switch – One end of switch to +5V | Other end to Ground through a 10K current
limiting resistor

PIR Sensor – has got 3 pins – Vcc to +5 volts | GND to Ground | OUT pin to Arduino
pin 7

Note:-Wire all grounds together at a common point.

Arduino Code for Bulgar Alarm using PIR Sensor and Buzzer

int sensor=7; //The output of PIR sensor connected to pin 7

int push_switch=6; // push button switch connected to pin 6

int buzzer=8; // buzzer connected at pin 8

int sensor_value; //variable to hold read sensor value

void setup()

{

pinMode(sensor,INPUT); // configuring pin 7 as Input

pinMode(push_switch,INPUT); // configuring pin 6 as Input

pinMode(buzzer,OUTPUT); // configuring pin 8 as OUTPUT

}

void loop()

{

sensor_value=digitalRead(sensor); // Reading sensor value from pin 7

if(sensor_value==HIGH) // Checking if PIR sensor sends a HIGH signal to

Arduino

{

digitalWrite(buzzer,HIGH); // Activating the buzzer

}

if(digitalRead(push_switch==HIGH))// Checking if pushbutton was pressed

{

digitalWrite(buzzer,LOW); // turning OFF the buzzer

}}

Arduino Code for PIR Sensor Interfacing

19

int sensor=7; //The output of PIR sensor connected to pin 7

int sensor_value; //variable to hold read sensor value

void setup()

{

pinMode(sensor,INPUT); // configuring pin 7 as Input

Serial.begin(9600); // To show output value of sensor in serial monitor

}

void loop()

{

sensor_value=digitalRead(sensor); // Reading sensor value from pin 7

Serial.println(sensor_value); // Printing output to serial monitor

}

Output:

when there is no motion inside range

Output of PIR Sensor in Arduino Serial Monitor – when there is motion

detected in range

20

Result: The above experiment is designed and executed successfully.

21

Experiment – 3(c)

Aim: Displaying humidity and temperature values on LCD

 Components Required:
 Arduino Uno Board 16 x 2 LCD Display Humidity Sensor Temperature Sensor

Interface 16x2 LCD to Arduino by connecting pins 4,6, and 11-14 of the LCD

connected to Uno pins 2,3, and 4-7, respectively. Connect the LCD using a

solderless breadboard.

DHT11 Temperature and Humidity Sensor

There are different types of DHT Sensors such as DHT11, DHT21, DHT22, DHT33,

and DHT44. They all are used to measure temperature and humidity, but the

difference lies mostly in their accuracy and sampling rate.

22

3 pin DHT11 Sensor

DHT11 Sensor mounted to Modulus with R/A Female Header.

Arduino Code

//Interface the DHT11 Temp & Humidity sensor and display humidity and

temperature

//in Celsius on a 16x2 character LCD

#include <dht.h>

#include <LiquidCrystal.h>

dht DHT;

const int RS = 2, EN = 3, D4 = 4, D5 = 5, D6 = 6, D7 = 7;

LiquidCrystallcd(RS,EN,D4,D5,D6,D7); //set Uno pins that are connected to

LCD, 4-bit mode

void setup() {

lcd.begin(16,2); //set 16 columns and 2 rows of 16x2 LCD

}

void loop() {

int readDHT = DHT.read11(8); //grab 40-bit data packet from DHT sensor

lcd.setCursor(0,0);

lcd.print("Temp: ");

lcd.print(DHT.temperature);

//lcd.print((char)223); //used to display degree symbol on display

//lcd.write(0xdf); //another way to display degree symbol

lcd.print("C");

lcd.setCursor(0,1);

23

lcd.print("Humidity: ");

lcd.print(DHT.humidity);

lcd.print("%");

delay(3000);

}

Result: The above experiment is designed and executed successfully.

24

Experiement – 4(a)

Aim: Controlling relay state based on input from IR sensors

Procedure

Whenever we need to connect any AC Appliance in our embedded circuits, we use a

Relay.Use an NPN transistor to control relay.

Components Required:

1. Arduino

2. 5v or 6v relay

3. AC appliance or Bulb

4. BC547 transistor

5. 1k resistor

6. Breadboard or PCB

7. Connecting jumper wire

8. Power supply

9. 1n4007 diode

10. Screw terminal or terminal block

Relay:

Relay is an electromagnetic switch, which is controlled by small current, and used to switch

ON and OFF relatively much larger current. Means by applying small current we can

switch ON the relay which allows much larger current to flow. A relay is a good

example of controlling the AC (alternate current) devices, using a much smaller DC

current. Commonly used Relay is Single Pole Double Throw (SPDT) Relay, it has five

terminals as below:

25

Here to turn on the Relay with Arduino we just need to make that Arduino Pin High

(A0 in our case) where Relay module is connected.

Circuit Diagram and Working:

In this Arduino Relay Control Circuit we have used Arduino to control the relay via

a BC547 transistor. We have connected transistor base to Arduino pin A0 through a 1k

resistor. An AC bulb is used for demonstration. The 12v adaptor is used for powering

the circuit.

26

Working is simple, we need to make the RELAY Pin (PIN A0) high to make the

Relay module ON and make the RELAY pin low to turn off the Relay Module. The

AC light will also turn on and off according to Relay.

We just programmed the Arduino to make the Relay Pin (A0) High and Low with a

delay of 1 second:

void loop()

{

digitalWrite(relay, HIGH);
delay(interval);

digitalWrite(relay, LOW);
delay(interval);

}

// Arduino Relay Control Code

#define relay A0
#define interval 1000

void setup() {
pinMode(relay, OUTPUT);

}

27

void loop()

{
digitalWrite(relay, HIGH);
delay(interval);
digitalWrite(relay, LOW);
delay(interval);

}

Result: The above experiment is designed and executed successfully.

Experiment – 4(b)

28

Aim: Interfacing stepper motor with R-Pi

Procedure

Stepper Motor

 Stepper motor is a brushless DC motor that divides the full rotation angle of 360°

into number of equal steps.

 The motor is rotated by applying certain sequence of control signals. The speed

of rotation can be changed by changing the rate at which the control signals are

applied.

 For more information about Stepper Motor, its control sequence and how to use

it, refer the topic Stepper Motor in the sensors and modules section.

 Raspberry Pi’s GPIOs can be used to control stepper motor rotation.

Connection Diagram of Stepper Motor with Raspberry Pi

29

Rotate Stepper Motor using Raspberry Pi

Let’s rotate a Stepper Motor in clockwise and counter-clockwise directions
alternately.

 Here, we are using six wire unipolar stepper motor. Only four wires are required
to control this stepper motor. The two center tap wires of the stepper motor are
connected to the 5V supply.

 ULN2003 driver is used to drive unipolar stepper motor.

 We will interface Stepper Motor with Raspberry Pi using Python language. In
this program, we have used the keyboard key as input for selecting motor
rotation direction (i.e. clockwise or anti-clockwise).

Stepper Motor Python Program for Raspberry Pi
'''

'''

Stepper Motor interfacing with Raspberry Pi
http:///www.electronicwings.com

importRPi.GPIOas GPIO
from time import sleep
import sys

#assign GPIO pins for motor
motor_channel = (29,31,33,35)
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)
#for defining more than 1 GPIO channel as input/output use
GPIO.setup(motor_channel, GPIO.OUT)

motor_direction = input('select motor direction a=anticlockwise, c=clockwise: ')
whileTrue:
try:
if(motor_direction == 'c'):
print('motor running clockwise\n')
GPIO.output(motor_channel, (GPIO.HIGH,GPIO.LOW,GPIO.LOW,GPIO.HIGH))
sleep(0.02)
GPIO.output(motor_channel, (GPIO.HIGH,GPIO.HIGH,GPIO.LOW,GPIO.LOW))
sleep(0.02)
GPIO.output(motor_channel, (GPIO.LOW,GPIO.HIGH,GPIO.HIGH,GPIO.LOW))
sleep(0.02)
GPIO.output(motor_channel, (GPIO.LOW,GPIO.LOW,GPIO.HIGH,GPIO.HIGH))
sleep(0.02)

elif(motor_direction == 'a'):
print('motor running anti-clockwise\n')
GPIO.output(motor_channel, (GPIO.HIGH,GPIO.LOW,GPIO.LOW,GPIO.HIGH))
sleep(0.02)
GPIO.output(motor_channel, (GPIO.LOW,GPIO.LOW,GPIO.HIGH,GPIO.HIGH))

http://www.electronicwings.com/

30

sleep(0.02)
GPIO.output(motor_channel, (GPIO.LOW,GPIO.HIGH,GPIO.HIGH,GPIO.LOW))
sleep(0.02)
GPIO.output(motor_channel, (GPIO.HIGH,GPIO.HIGH,GPIO.LOW,GPIO.LOW))
sleep(0.02)

#press ctrl+c for keyboard interrupt
exceptKeyboardInterrupt:
#query for setting motor direction or exit
motor_direction = input('select motor direction a=anticlockwise, c=clockwise or
q=exit: ')
#check for exit
if(motor_direction == 'q'):
print('motor stopped')
sys.exit(0)

Result: The above experiment is designed and executed successfully.

Experiment – 4(C)

31

Aim: Advanced burglar alarm security system with the help of PIR sensor, buzzer and

keypad. (Alarm gets disabled if correct keypad password is entered)

Procedure

Advanced Bulgar Alarm Using PIR Sensor & Arduino for Night time only.
A night security light only turns on when it’s dark and when movement is detected.
The lamp & the buzzer turns on when it’s dark & movement is detected. When there’s light,
the lamp is turned off, even when motion is detected.

Components Required:

1. Arduino UNO Board
2. PIR Sensor HC-SR501
3. LDR
4. 10K Resistor
5. LED
6. Buzzer
7. 9V Battery

Circuit Diagram & Connections:

Working of PIR Sensor:

PIR has multiple variables that affect the sensor’s input and output.

32

The PIR sensor itself has two slots in it, each slot is made of a special material that is

sensitive to IR. The lens used here is not really doing much and so we see that the

two slots can ‘see’ out past some distance (basically the sensitivity of the sensor).

When the sensor is idle, both slots detect the same amount of IR, the ambient amount

radiated from the room or walls or outdoors. When a warm body like a human or

animal passes by, it first intercepts one-half of the PIR sensor, which causes a positive

differential change between the two halves. When the warm body leaves the sensing area,

the reverse happens, whereby the sensor generates a negative differential change.

These change pulses are what is detected.

The circuit is in fact a dark activated switch that measures the ambient light level
and will enable the system only when ambient light level is below a threshold value.
Here an LDR (Light Dependent Resistor) is used to measure the light level. The alarm
system is triggered when a “Logic High (H)” level signal is detected at its sensor input
port.

33

The best sensor you can use to detect an intrusion is the Passive Infrared (PIR) Sensor.
The PIR Sensor detects the motion of a human body by the change in surrounding ambient
temperature when a human body passes across, and effectively controls the
switchingwhen it detects a moving target.

Copy the code and paste it to your Arduino IDE and then compile & finally, upload it to
the Arduino Board.

Arduino Code

int Buzzer = 6; // choose the pin for the Buzzer
int inputPin = 2; // choose the input pin (for PIR sensor)
int pirState = LOW; // we start, assuming no motion detected
int val = 0; // variable for reading the pin status
void setup() {
pinMode(ledPin, OUTPUT); // declare LED as output
pinMode(Buzzer, OUTPUT); // declare Buzzer as output
pinMode(inputPin, INPUT); // declare sensor as input
Serial.begin(9600);
}
void loop(){
val = digitalRead(inputPin); // read input value
int value_ldr = analogRead(A0); // read LDR value
if((300>value_ldr) && (val==HIGH)){
if (val == HIGH) { // check if the input is HIGH
digitalWrite(ledPin, HIGH); // turn LED ON
digitalWrite(Buzzer, 1); // turn Buzzer ON
delay(5000);
if (pirState == LOW) {
// we have just turned on
Serial.println("Motion detected!");
// We only want to print on the output change, not state
pirState = HIGH;
}
} else {
digitalWrite(ledPin, LOW); // turn LED OFF
digitalWrite(Buzzer, 0); // turn Buzzer OFF if
(pirState == HIGH){
// we have just turned of
Serial.println("Motion ended!");
// We only want to print on the output change, not state
pirState = LOW;
}
}
}
}

34

Output

Result: The above experiment is designed and executed successfully.

35

Experiment – 4 (d)

Aim: Automated LED light control based on input from PIR (to detect if people are
present) and LDR (ambient light level)

Procedure

Hardware Supplies:
1. Arduino Uno (any other arduino board will be just fine as long as it provides an
Analogical pin).
2. PIR Motion Sensor
3. LDR (Photoresistor)
4. 10 KOhms resistor
5. Relay module
6. Lamp
7. Breadboard (optional)
Software Supplies:
1. Arduino IDE

PIR sensor:
The PIR sensor stands for Passive Infrared sensor. It is a low cost sensor which can
detect the presence of Human beings or animals. There are two important materials
present in the sensor one is the pyroelectric crystal which can detect the heat
signatures from a living organism (humans/animals) and the other is a Fresnel lenses
which can widen the range of the sensor. Also the PIR sensor modules provide us some
options to adjust the working of the sensor as shown in above image.

LDR resistor:
A photoresistor (or light-dependent resistor, LDR, or photo-conductive cell) is a light-
controlled variable resistor. The resistance of a photoresistor decreases with
increasing incident light intensity. a photoresistor is made of a high resistance
semiconductor. In the dark, a photoresistor can have a resistance as high as several
megohms (MΩ), while in the light, a photo resistor can have a resistance as low as a
few hundred ohms.

Circuit Diagram and Connections

36

1. Arduino and LDR

The schematic is quite simple you should just follow the instructions bellow :

1. Connect one of the LDR leg to the VCC (5v of the Arduino).

2. Connect the other LDR leg to the A4 pin Of Arduino and also to the resistor

3. Connect the (empty) resistor to the GND of the Arduino.

Note: You can see all the connections in the picture above.

2. Arduino and PIR motion sensor

The PIR sensor has three pins:

1. VCC

37

2. GND

3. OUT

We have powered the PIR sensor using he 5V Rail of the Arduino. The output pin of
the PIR Sensor is connected to the 8thdigital pin. Then, you have to wire the ''GND''
to the Arduino's ''GND''.

In this experiment, we use relay for controlling AC light because the Arduino cannot
control high volt, but a relay can do this job, which is the sole design of it. so we are
using relay as switch to control high power devices.

There are two ways to assembly the relay connection:

1. NC = Normally Closed Connection (Here we are using this one).

2. NO = Normally Open Connection.

So you have to wire the relays ''OUT'' to the 8th digital pin of the arduino uno. Then

the relay's ''GND'' to the arduino's ''GND'' and ''VCC'' to the ''VCC''.

Arudino Code

38

#define LAMP 8 // choose the pin for the RELAY
#define PIR 13 // choose the input pin (for PIR sensor)
void setup()
{
Serial.begin(9600);
pinMode(LAMP, OUTPUT); // declare lamp as output
pinMode(PIR,INPUT); // declare sensor as input
void loop()
{

int value_ldr = analogRead(A4); // read LDR value
int value_pir = digitalRead(PIR); // read input value

Serial.println(value_ldr);
Serial.println(value_pir);

if((300>value_ldr) &&(value_pir==HIGH)){

digitalWrite(LAMP,1); // Turn ON the light
delay(6000);
}
else {
digitalWrite(LAMP,0); // Turn OFF the light
}
}

Result : The above experiment is designed and executed successfully.

Experiment – 5

39

Aim: Upload humidity & temperature data to Thing Speak, periodically logging
ambient light level to Thing Speak

Procedure

In this experiment, we are using the DHT11 sensor for sending Temperature and
Humidity data toThing speak using Arduino. By this method, we can monitor our
DHT11 sensor’s temperature and humidity data over the internet using the ThingSpeak
IoT server. And we can view the logged data and graph overtime on the Thingspeak
website.

Here Arduino Uno reads the current temperature and humidity data from DHT11 and
sends it to the ThingSpeak server for live monitoring from anywhere in the world. We
previously used ThingSpeak with Raspberry Pi and ESP32 to upload the data on the cloud.
ThingSpeak is an open data platform for monitoring your data online where you can
set the data as private or public according to your choice. ThingSpeak takes a minimum
of 15 seconds to update your readings. It's a great and very easy-to-use platform for
building IoT projects.

Components Required

 Arduino Uno
 ESP8266 WiFi Module
 DHT11 Sensor
 Breadboard
 Jumper Wires

Software Required

Things Speak Account is needed i.e We have to create cloud server account.

Circuit Diagram and Connections

Temperature and Humidity Monitoring System Circuit Diagram

40

Connections are given in below table:

S.No. Pin Name Arduino Pin

1 ESP8266 VCC 3.3V

2 ESP8266 RST 3.3V

3 ESP8266 CH-PD 3.3V

4 ESP8266 RX TX

5 ESP8266 TX RX

6 ESP8266 GND GND

7 DHT-11 VCC 5V

8 DHT-11 Data 5

9 DHT-11 GND GND

Step 1: ThingSpeak Setup for Temperature and Humidity Monitoring

For creating your channel on Thingspeak, you first need to Sign up on Thingspeak. In

case if you already have an account on Thingspeak, just sign in using your id and

password.

For creating your account go to www.thinspeak.com

http://www.thinspeak.com/

41

Click on Sing up if you don’t have account and if you already have an account,
then click on sign in.

After clicking on signup, fill in your details.

After this, verify your E-mail id and click on continue.

Step 2: Create a Channel for Your Data

Once you Sign in after your account verification, Create a new channel by clicking
“New Channel” button.

42

After clicking on “New Channel”, enter the Name and Description of the data you want to upload on

this channel. For example, I am sending my DHT11 sensor data, so I named it DHT11 data.

Enter the name of your data ‘Temperature’ in Field1 and ‘Humidity’ in Field2. If you want to use more

Fields, you can check the box next to Field option and enter the name and description of your data.

After this, click on the save channel button to save your details.

Step 3: API Key

To send data to Thingspeak, we need a unique API key, which we will use later in our code to upload

our sensor data to Thingspeak Website.

Click on “API Keys” button to get your unique API key for uploading your sensor data.

Now copy your “Write API Key”.We will use this API key in our code.

43

Programming Arduino for Sending data to ThingSpeak

To program Arduino, open Arduino IDE and choose the correct board and port from

the ‘tool’ menu.

Output

Upload it in Arduino UNO. If you successfully upload your program, Serial monitor will look like this:

After this navigate to your Thingspeak page and open your channel at Thingspeak

and output will be shown as below:

44

Hence, we have successfully monitored Temperature and Humidity data over

ThingSpeak using Arudino and ESP32.

Arduino Code

#include <stdlib.h>
#include <DHT.h>
#define DHTPIN 5 // DHT data pin connected to Arduino pin 5
#define DHTTYPE DHT11 // DHT11 (DHT Sensor Type)
DHT dht(DHTPIN, DHTTYPE); // Initialize the DHT sensor
#define SSID "WiFi Name" // "WiFi Name"
#define PASS "WiFi Password" // "Password"
#define IP "184.106.153.149"// thingspeak.com ip
String msg = "GET /update?key=Your API Key"; //change it with your key...
float temp;
int hum;
String tempC;
int error;
void setup()
{

Serial.begin(115200); // use default 115200.
Serial.println("AT");
delay(5000);
if(Serial.find("OK")){

connectWiFi();
}

}
void loop(){

start:
error=0;
temp = dht.readTemperature();
hum = dht.readHumidity();
char buffer[10];
tempC = dtostrf(temp, 4, 1, buffer);
updateTemp();
if (error==1){

goto start;
}

delay(5000);

}
void updateTemp(){

String cmd = "AT+CIPSTART=\"TCP\",\"";
cmd += IP;
cmd += "\",80";
Serial.println(cmd);
delay(2000);
if(Serial.find("Error")){

return;
}

45

cmd = msg ;
cmd += "&field1=";
cmd += tempC;
cmd += "&field2=";
cmd += String(hum);
cmd += "\r\n";
Serial.print("AT+CIPSEND=");
Serial.println(cmd.length());
if(Serial.find(">")){

Serial.print(cmd);
}
else{

Serial.println("AT+CIPCLOSE");
//Resend...
error=1;

}
}

booleanconnectWiFi(){
Serial.println("AT+CWMODE=1");
delay(2000);
String cmd="AT+CWJAP=\"";
cmd+=SSID;
cmd+="\",\"";
cmd+=PASS;
cmd+="\"";
Serial.println(cmd);
delay(5000);
if(Serial.find("OK")){

return true;
}else{

return false;
}

}

Result: The above experiment is designed and executed successfully.

46

Experiment – 6

Aim: Controlling LEDs, relay & buzzer using Blynk app

Procedure

Step -1: Components Required

1. Arduino Uno X 1

2. HC-05 Bluetooth module X1

3. Jumper Wires X 6-10

4. Buzzer X 1

5. Led X 1

Step – 2 :Circuit Diagrami.e Setup

HC 05 Bluetooth module...

Module Ardduino

Vcc 5v

GND GND

Tx Digital pin 10.

Rx Digital pin 11

- Buzzer

- LED

module Arduino

+ve Digital pin 3

-veGnd

47

module Arduino

+ve Digital pin 13

-veGnd

Step – 3 Blink App

1. Go to Play Store from your android phone and download and install blynk app.
2. Open Blynk app.
3. Sign up/Register.
4. Now Click on Creat new project
5. Poject name - "Give Your project a name" (For e.g. i call it "BlueBuzz")
6. Choose device - "Arduino UNO"
7. Connection Type - "Bluetooth"

48

8. Now click "Create"
9. As soon as you click "Create", a mail called "dispatcher" is sent to you by blink.
10. Open mail and copy the "Auth token".
11. Now visit blynk website.
12. Now there you will find "Download blynk library". Now click on it follow the

instructions and download blynk library.
13. Now extract the downloaded library and copy it to C:\Program Files

(x86)\Arduino\libraries. (In the drive where you have installed arduino software,
there you will find a folder called "libraries" not "lib" paste the library into "Library"
folder.)

14. Now again visit blynk website.
15. Under "Flash" you will find "Sketch Builder", click on "Sketch Builder", On
left side you will find...

-Board = Arduino

-Connection = HC05/HC06

-Example = GettingStarted/BlynkBlink

16. Now copy example and paste it to the arduino IDE.
17. Now paste the "Auth Token" (mailed by blynk) in the place of "Your Auth" and
remove jumpers from pin 10 and 11 from arduino and upload the code to board.

Step 4: Creating Interface in App

49

 Click on "add widget" (+) and select a button.
 now click on button.

 Give name to button say "led".
 under OUTPUT tab...

50

- click pin and select the pin to which led is connected arduino, here it is digital pin

13, hence select digital and under pin D13. And Click continue.

 under MODE tab...

- select whether you want this button as "push button" or "Switch".

 lick back.

 Click on "add widget" (+) and select "Slider".

 Click on "Slider".

- Name the slider say "buzzer"
- Under OUTPUT tab...

Select the pin no to which buzzer is connected to arduino, here it is digital pin D3.

Click "continue".

- under SEND ON RELEASE tab...

set it to OFF

- click back.

 Click on "add widget" (+) and select "Bluetooth".

 Now close the app.

 Now power your Arduino (you should see red light blinking on bluetooth

module and make sure you have reconnected jumpers to pin 10 and 11)

 Turn on bluetooth of your phone and search for "HC-05", now pair the device

with default key "1234".

 After successful pairing. Open Blynk app, select the project you have created

select bluetooth.
 tap on connect "bluetooth device" here you should find "HC 05" select it.

 now you should see #HC-05 connected. and now hit back.

 Now in rt most corner you should see "play" button adjacent to "Add widget",

hit "play"

 Now press led it should turn on led and move the slider accordingly buzzer

should sound.

Experiment - 7

51

Aim: Introduction to HTTP. Hosting a basic server from the ESP32 to control various

digital basedactuators (led, buzzer, relay) from a simple web page.

Procedure

ESP32 Web Server – Arduino IDE

In this experiement you’ll create a standalone web server with an ESP32 that controls

outputs (two LEDs) using the Arduino IDE programming environment. The web server

is mobile responsive and can be accessed with any device that as a browser on the local

network. We’ll show you how to create the web server and how the code works step-

by-step.

52

 The web server you’ll build controls two LEDs connected to the ESP32 GPIO 26

and GPIO 27;

 You can access the ESP32 web server by typing the ESP32 IP address on a

browser in the local network;

 By clicking the buttons on your web server you can instantly change the state

of each LED.

Parts Required

 ESP32 development board – read ESP32 Development Boards Review and

Comparison

 2x 5mm LED

 2x 330 Ohm resistor

 Breadboard

 Jumper wires

Schematic

Start by building the circuit. Connect two LEDs to the ESP32 as shown in the following
schematic diagram – one LED connected to GPIO 26, and the other to GPIO 27.

We’re using the ESP32 DEVKIT DOIT board with 36 pins. Before assembling the circuit,
make sure you check the pinout for the board you’re using.

https://makeradvisor.com/tools/esp32-dev-board-wi-fi-bluetooth/
https://makeradvisor.com/esp32-development-boards-review-comparison/
https://makeradvisor.com/esp32-development-boards-review-comparison/
https://makeradvisor.com/tools/3mm-5mm-leds-kit-storage-box/
https://makeradvisor.com/tools/resistors-kits/
https://makeradvisor.com/tools/mb-102-solderless-breadboard-830-points/
https://makeradvisor.com/tools/jumper-wires-kit-120-pieces/

53

ESP32 Web Server Code

Copy the following code to your Arduino IDE, but don’t upload it yet.

// Load Wi-Fi library

#include <WiFi.h>

// Replace with your network credentials
const char* ssid = "REPLACE_WITH_YOUR_SSID";
const char* password = "REPLACE_WITH_YOUR_PASSWORD";

// Set web server port number to 80
WiFiServerserver(80);

// Variable to store the HTTP request
String header;

// Auxiliar variables to store the current output state
String output26State = "off";
String output27State = "off";

// Assign output variables to GPIO pins
const int output26 = 26;
const int output27 = 27;

// Current time
unsigned long currentTime = millis();
// Previous time
unsigned long previousTime = 0;
// Define timeout time in milliseconds (example: 2000ms = 2s)
const long timeoutTime = 2000;

54

void setup() {
Serial.begin(115200);

// Initialize the output variables as outputs
pinMode(output26, OUTPUT);
pinMode(output27, OUTPUT);

// Set outputs to LOW
digitalWrite(output26, LOW);
digitalWrite(output27, LOW);

// Connect to Wi-Fi network with SSID and password
Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");

}
// Print local IP address and start web server

Serial.println("");
Serial.println("WiFi connected.");
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
server.begin();
}

void loop(){
WiFiClient client = server.available(); // Listen for incoming clients

if (client) { // If a new client connects,
currentTime = millis();
previousTime = currentTime;
Serial.println("New Client."); // print a message out in the serial port

String currentLine = ""; // make a String to hold incoming data from the
client

while (client.connected() &¤tTime - previousTime<= timeoutTime) { // loop
while the client's connected
currentTime = millis();

if (client.available()) { // if there's bytes to read from the client,
char c = client.read(); // read a byte, then

Serial.write(c); // print it out the serial monitor
header += c;
if (c == '\n') { // if the byte is a newline character

// if the current line is blank, you got two newline characters in a row.
// that's the end of the client HTTP request, so send a response:
if (currentLine.length() == 0) {

// HTTP headers always start with a response code (e.g. HTTP/1.1 200 OK)
// and a content-type so the client knows what's coming, then a blank line:

client.println("HTTP/1.1 200 OK");
client.println("Content-type:text/html");

55

client.println("Connection: close");
client.println();

// turns the GPIOs on and off
if (header.indexOf("GET /26/on") >= 0) {

Serial.println("GPIO 26 on");
output26State = "on";

digitalWrite(output26, HIGH);
} else if (header.indexOf("GET /26/off") >= 0) {

Serial.println("GPIO 26 off");
output26State = "off";

digitalWrite(output26, LOW);
} else if (header.indexOf("GET /27/on") >= 0) {

Serial.println("GPIO 27 on");
output27State = "on";

digitalWrite(output27, HIGH);
} else if (header.indexOf("GET /27/off") >= 0) {

Serial.println("GPIO 27 off");
output27State = "off";

digitalWrite(output27, LOW);
}

// Display the HTML web page

client.println("<!DOCTYPE html><html>");
client.println("<head><meta name=\"viewport\" content=\"width=device-width,
initial-scale=1\">");
client.println("<link rel=\"icon\" href=\"data:,\">");

// CSS to style the on/off buttons
// Feel free to change the background-color and font-size attributes to fit

your preferences
client.println("<style>html { font-family: Helvetica; display: inline-block; margin: 0px
auto; text-align: center;}");
client.println(".button { background-color: #4CAF50; border: none; color: white;
padding: 16px 40px;");
client.println("text-decoration: none; font-size: 30px; margin: 2px; cursor: pointer;}");
client.println(".button2 {background-color: #555555;}</style></head>");

// Web Page Heading

client.println("<body><h1>ESP32 Web Server</h1>");

// Display current state, and ON/OFF buttons for GPIO 26
client.println("<p>GPIO 26 - State " + output26State + "</p>");

// If the output26State is off, it displays the ON button
if (output26State=="off") {

client.println("<p><ahref=\"/26/on\"><button
class=\"button\">ON</button></p>");

} else {
client.println("<p><button class=\"button
button2\">OFF</button></p>");

}

56

// Display current state, and ON/OFF buttons for GPIO 27
client.println("<p>GPIO 27 - State " + output27State + "</p>");

// If the output27State is off, it displays the ON button
if (output27State=="off") {

client.println("<p><button
class=\"button\">ON</button></p>");

} else {
client.println("<p><button class=\"button
button2\">OFF</button></p>");

}
client.println("</body></html>");

// The HTTP response ends with another blank line
client.println();

// Break out of the while loop
break;

} else { // if you got a newline, then clear currentLine
currentLine = "";

}
} else if (c != '\r') { // if you got anything else but a carriage return character,

currentLine += c; // add it to the end of the currentLine
}

}
}
// Clear the header variable
header = "";
// Close the connection

client.stop();
Serial.println("Client disconnected.");
Serial.println("");

}
}

Setting Your Network Credentials

You need to modify the following lines with your network credentials: SSID and password. The code is

well commented on where you should make the changes.

// Replace with your network credentials

constchar*ssid="REPLACE_WITH_YOUR_SSID";

constchar* password ="REPLACE_WITH_YOUR_PASSWORD";

Uploading the Code

Now, you can upload the code and and the web server will work straight away. Follow the next steps to

upload code to the ESP32:

1) Plug your ESP32 board in your computer;

57

2) In the Arduino IDE select your board in Tools>Board (in our case we’re using the ESP32 DEVKIT

DOIT board);

3) Select the COM port in Tools> Port.

4) Press the Upload button in the Arduino IDE and wait a few seconds while the code compiles and

uploads to your board.

58

5) Wait for the “Done uploading” message.

Finding the ESP IP Address

After uploading the code, open the Serial Monitor at a baud rate of 115200.

Press the ESP32 EN button (reset). The ESP32 connects to Wi-Fi, and outputs the ESP IP address on the

Serial Monitor. Copy that IP address, because you need it to access the ESP32 web server.

Accessing the Web Server

To access the web server, open your browser, paste the ESP32 IP address, and you’ll see the following

page. In our case it is 192.168.1.135.

59

If you take a look at the Serial Monitor, you can see what’s happening on the background. The ESP

receives an HTTP request from a new client (in this case, your browser).

You can also see other information about the HTTP request.

Testing the Web Server

Now you can test if your web server is working properly. Click the buttons to control the LEDs.

60

At the same time, you can take a look at the Serial Monitor to see what’s going on in the background.

For example, when you click the button to turn GPIO 26 ON, ESP32 receives a request on the /26/on

URL.

When the ESP32 receives that request, it turns the LED attached to GPIO 26 ON and updates its state on

the web page.

The button for GPIO 27 works in a similar way. Test that it is working properly.

How the Code Works

In this section will take a closer look at the code to see how it works.

The first thing you need to do is to include the WiFi library.

61

#include <WiFi.h>

As mentioned previously, you need to insert your ssid and password in the following lines inside the

double quotes.

constchar*ssid="";

constchar* password ="";

Then, you set your web server to port 80.

WiFiServerserver(80);

The following line creates a variable to store the header of the HTTP request:

String header;

Next, you create auxiliar variables to store the current state of your outputs. If you want to add more

outputs and save its state, you need to create more variables.

String output26State ="off";

String output27State ="off";

You also need to assign a GPIO to each of your outputs. Here we are using GPIO 26 and GPIO 27. You

can use any other suitable GPIOs.

constint output26 =26;

constint output27 =27;

setup()

Now, let’s go into the setup(). First, we start a serial communication at a baud rate of 115200 for

debugging purposes.

Serial.begin(115200);

You also define your GPIOs as OUTPUTs and set them to LOW.

// Initialize the output variables as outputs

pinMode(output26, OUTPUT);

pinMode(output27, OUTPUT);

// Set outputs to LOW

digitalWrite(output26, LOW);

digitalWrite(output27, LOW);

The following lines begin the Wi-Fi connection with WiFi.begin(ssid, password), wait for a successful

connection and print the ESP IP address in the Serial Monitor.

// Connect to Wi-Fi network with SSID and password

Serial.print("Connecting to ");

Serial.println(ssid);

WiFi.begin(ssid, password);

while(WiFi.status()!= WL_CONNECTED){

delay(500);

Serial.print(".");

62

}

// Print local IP address and start web server

Serial.println("");

Serial.println("WiFi connected.");

Serial.println("IP address: ");

Serial.println(WiFi.localIP());

server.begin();

loop()

In the loop() we program what happens when a new client establishes a connection with the web server.

The ESP32 is always listening for incoming clients with the following line:

WiFiClient client =server.available();// Listen for incoming clients

When a request is received from a client, we’ll save the incoming data. The while loop that follows will

be running as long as the client stays connected. We don’t recommend changing the following part of

the code unless you know exactly what you are doing.

if(client){// If a new client connects,

Serial.println("New Client.");// print a message out in the serial port

String currentLine="";// make a String to hold incoming data from the client

while(client.connected()){// loop while the client's connected

if(client.available()){// if there's bytes to read from the client,

char c =client.read();// read a byte, then

Serial.write(c);// print it out the serial monitor

header += c;

if(c =='\n'){// if the byte is a newline character

// if the current line is blank, you got two newline characters in a row.

/ that's the end of the client HTTP request, so send a response:

if(currentLine.length()==0){

// HTTP headers always start with a response code (e.g. HTTP/1.1 200 OK)

// and a content-type so the client knows what's coming, then a blank line:

client.println("HTTP/1.1 200 OK");

client.println("Content-type:text/html");

client.println("Connection: close");

client.println();

The next section of if and else statements checks which button was pressed in your web page, and

controls the outputs accordingly. As we’ve seen previously, we make a request on different URLs

depending on the button pressed.

// turns the GPIOs on and off

if(header.indexOf("GET /26/on")>=0){

Serial.println("GPIO 26 on");

output26State ="on";

digitalWrite(output26, HIGH);

}elseif(header.indexOf("GET /26/off")>=0){

Serial.println("GPIO 26 off");

output26State ="off";

digitalWrite(output26, LOW);

}elseif(header.indexOf("GET /27/on")>=0){

Serial.println("GPIO 27 on");

output27State ="on";

digitalWrite(output27, HIGH);

}elseif(header.indexOf("GET /27/off")>=0){

Serial.println("GPIO 27 off");

63

output27State ="off";

digitalWrite(output27, LOW);

}

For example, if you’ve press the GPIO 26 ON button, the ESP32 receives a request on the /26/ON URL

(we can see that that information on the HTTP header on the Serial Monitor). So, we can check if the

header contains the expression GET /26/on. If it contains, we change the output26state variable to ON,

and the ESP32 turns the LED on.

This works similarly for the other buttons. So, if you want to add more outputs, you should modify this

part of the code to include them.

Displaying the HTML web page

The next thing you need to do, is creating the web page. The ESP32 will be sending a response to your

browser with some HTML code to build the web page.

The web page is sent to the client using this expressing client.println(). You should enter what you want

to send to the client as an argument.

The first thing we should send is always the following line, that indicates that we are sending HTML.

<!DOCTYPE HTML><html>

Then, the following line makes the web page responsive in any web browser.

client.println("<head><meta name=\"viewport\" content=\"width=device-width,

initial-scale=1\">");

And the following is used to prevent requests on the favicon. – You don’t need to worry about this line.

client.println("<link rel=\"icon\" href=\"data:,\">");

Styling the Web Page

Next, we have some CSS text to style the buttons and the web page appearance. We choose the

Helvetica font, define the content to be displayed as a block and aligned at the center.

client.println("<style>html { font-family: Helvetica; display: inline-block;

margin: 0px auto; text-align: center;}");

We style our buttons with the #4CAF50 color, without border, text in white color, and with this padding:

16px 40px. We also set the text-decoration to none, define the font size, the margin, and the cursor to a

pointer.

client.println(".button { background-color: #4CAF50; border: none; color: white;

padding: 16px 40px;");

client.println("text-decoration: none; font-size: 30px; margin: 2px; cursor:

pointer;}");

64

We also define the style for a second button, with all the properties of the button we’ve defined earlier,

but with a different color. This will be the style for the off button.

client.println(".button2 {background-color: #555555;}</style></head>");

Setting the Web Page First Heading

In the next line you can set the first heading of your web page. Here we have “ESP32 Web Server”, but

you can change this text to whatever you like.

// Web Page Heading

client.println("<h1>ESP32 Web Server</h1>");

Displaying the Buttons and Corresponding State

Then, you write a paragraph to display the GPIO 26 current state. As you can see we use the

output26State variable, so that the state updates instantly when this variable changes.

client.println("<p>GPIO 26 - State "+ output26State +"</p>");

Then, we display the on or the off button, depending on the current state of the GPIO. If the current state

of the GPIO is off, we show the ON button, if not, we display the OFF button.

if(output26State=="off"){

client.println("<p><button

class=\"button\">ON</button></p>");

}else{

client.println("<p><button class=\"button

button2\">OFF</button></p>");

}

We use the same procedure for GPIO 27.

Closing the Connection

Finally, when the response ends, we clear the header variable, and stop the connection with the client

with client.stop().

// Clear the header variable

header ="";

// Close the connection

client.stop();

Result: The above experiment is designed and executed successfully.

Experiment – 8

65

Aim: Displaying various sensor readings on a simple web page hosted on the ESP32.

Procedure

Build a web server with the ESP32 to display sensor readings in gauges. As an example,

we’ll display temperature and humidity from a BME280 sensor in two different gauges:

linear and radial. You can easily modify the project to plot any other data. To build the

gauges, we’ll use the canvas-gauges JavaScript library.

This experiment will build a web server with the ESP32 that displays temperature and

humidity readings from a BME280 sensor. We’ll create a linear gauge that looks like a

thermometer to display the temperature, and a radial gauge to display the humidity.

Server-Sent Events

The readings are updated automatically on the web page using Server-Sent Events

(SSE).

66

1. Install ESP32 Board in Arduino IDE

We’ll program the ESP32 using Arduino IDE. So, you must have the ESP32 add-on

installed. Follow the next tutorial if you haven’t already:

 Installing ESP32 Board in Arduino IDE (Windows, Mac OS X, Linux)

If you want to use VS Code with the PlatformIO extension, follow the next tutorial

instead to learn how to program the ESP32:

 Getting Started with VS Code and PlatformIO IDE for ESP32 and ESP8266

(Windows, Mac OS X, Linux Ubuntu)

2. Filesystem Uploader Plugin

To upload the HTML, CSS, and JavaScript files to the ESP32 flash memory (SPIFFS),

we’ll use a plugin for Arduino IDE: SPIFFSFilesystem uploader. Follow the next

tutorial to install the filesystem uploader plugin:

 ESP32: Install SPIFFS FileSystem Uploader Plugin in Arduino IDE

If you’re using VS Code with the PlatformIO extension, read the following tutorial to

learn how to upload files to the filesystem:

 ESP32 with VS Code and PlatformIO: Upload Files to Filesystem (SPIFFS)

3. Installing Libraries

To build this experiment, you need to install the following libraries:

 Adafruit_BME280 (Arduino Library Manager)

 Adafruit_Sensor library (Arduino Library Manager)

67

 Arduino_JSON library by Arduino version 0.1.0 (Arduino Library Manager)

 ESPAsyncWebServer (.zip folder);

 AsyncTCP (.zip folder).

You can install the first three libraries using the Arduino Library Manager. Go

to Sketch > Include Library > Manage Libraries and search for the libraries’ names.

In your Arduino IDE, go to Sketch > Include Library > Add .zip Library and select

the libraries you’ve just downloaded.

Installing Libraries (VS Code + PlatformIO)

monitor_speed = 115200

lib_deps = ESP Async WebServer

arduino-libraries/Arduino_JSON @ 0.1.0

adafruit/Adafruit BME280 Library @ ^2.1.0

adafruit/Adafruit Unified Sensor @ ^1.1.4

Parts Required

 ESP32

 BME280 Sensor

 Jumper wires

 Breadboard

Schematic Diagram

We’ll send temperature and humidity readings from a BME280 sensor. We’re going to
use I2C communication with the BME280 sensor module. For that, wire the sensor to
the default ESP32 SCL (GPIO 22) and SDA (GPIO 21) pins, as shown in the following
schematic diagram.

Organizing Files:

 Arduino sketch that handles the web server;

 index.html: to define the content of the web page;

 sytle.css: to style the web page;

https://makeradvisor.com/tools/esp32-dev-board-wi-fi-bluetooth/
https://makeradvisor.com/tools/bme280-sensor-module/
https://makeradvisor.com/tools/jumper-wires-kit-120-pieces/
https://makeradvisor.com/tools/mb-102-solderless-breadboard-830-points/

68

 script.js: to program the behavior of the web page—handle web server

responses, events, create the gauges, etc.

Code

index.html file.

<!DOCTYPE html>

<html>

<head>

<title>ESP IOT DASHBOARD</title>

<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="icon" type="image/png" href="favicon.png">

<link rel="stylesheet"

href="https://use.fontawesome.com/releases/v5.7.2/css/all.css" integrity="sha384-

fnmOCqbTlWIlj8LyTjo7mOUStjsKC4pOpQbqyi7RrhN7udi9RwhKkMHpvLbHG9Sr"

crossorigin="anonymous">

<link rel="stylesheet" type="text/css" href="style.css">

<script src="http://cdn.rawgit.com/Mikhus/canvas-gauges/gh-

pages/download/2.1.7/all/gauge.min.js"></script>
</head>

<body>

<div class="topnav">

<h1>ESP WEB SERVER GAUGES</h1>
</div>

<div class="content">

<div class="card-grid">
<div class="card">

<p class="card-title">Temperature</p>
<canvas id="gauge-temperature"></canvas>

</div>

<div class="card">
<p class="card-title">Humidity</p>

http://cdn.rawgit.com/Mikhus/canvas-gauges/gh-

69

<canvas id="gauge-humidity"></canvas>
</div>

</div>

</div>
<script src="script.js"></script>

</body>

</html>

CSS File
style.css file

html {

font-family: Arial, Helvetica, sans-serif;
display: inline-block;

text-align: center;

}

h1 {

font-size: 1.8rem;

color: white;

}
p {

font-size: 1.4rem;

}
.topnav {

overflow: hidden;

background-color: #0A1128;
}

body {

margin: 0;
}

.content {

padding: 5%;
}

.card-grid {

max-width: 1200px;

margin: 0 auto;

display: grid;

grid-gap: 2rem;

grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));

}

.card {
background-color: white;

box-shadow: 2px 2px 12px 1px rgba(140,140,140,.5);

}
.card-title {

font-size: 1.2rem;

needleCircleOuter: true,

needleCircleInner: false,

70

font-weight: bold;

color: #034078
}

JavaScript File (creating the gauges)
script.js file

minValue: 0,

startAngle: 90,
ticksAngle: 180,

maxValue: 40,

colorValueBoxRect: "#049faa",

colorValueBoxRectEnd: "#049faa",

colorValueBoxBackground: "#f1fbfc",

valueDec: 2,

valueInt: 2,

majorTicks: [
"0",

"5",

"10",
"15",

"20",

"25",

"30",

"35",

"40"
],

minorTicks: 4,

strokeTicks: true,
highlights: [

{

"from": 30,
"to": 40,

"color": "rgba(200, 50, 50, .75)"

}
],

colorPlate: "#fff",

colorBarProgress: "#CC2936",

colorBarProgressEnd: "#049faa",

borderShadowWidth: 0,

borders: false,

needleType: "arrow",
needleWidth: 2,

needleCircleSize: 7,

needleCircleOuter: true,

needleCircleInner: false,

71

animationDuration: 1500,

animationRule: "linear",

barWidth: 10,

}).draw();

// Create Humidity Gauge

var gaugeHum = new RadialGauge({
renderTo: 'gauge-humidity',

width: 300,

height: 300,
units: "Humidity (%)",

minValue: 0,

maxValue: 100,
colorValueBoxRect: "#049faa",

colorValueBoxRectEnd: "#049faa",

colorValueBoxBackground: "#f1fbfc",
valueInt: 2,

majorTicks: [

"0",
"20",

"40",
"60",

"80",

"100"

],

minorTicks: 4,

strokeTicks: true,

highlights: [

{

"from": 80,

"to": 100,

"color": "#03C0C1"
}

],

colorPlate: "#fff",

borderShadowWidth: 0,

borders: false,

needleType: "line",

colorNeedle: "#007F80",

colorNeedleEnd: "#007F80",

needleWidth: 2,

needleCircleSize: 3,
colorNeedleCircleOuter: "#007F80",

72

animationDuration: 1500,

animationRule: "linear"
}).draw();

// Function to get current readings on the webpage when it loads for the first
time

function getReadings(){

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function() {

if (this.readyState == 4 &&this.status == 200) {

var myObj = JSON.parse(this.responseText);
console.log(myObj);

var temp = myObj.temperature;

var hum = myObj.humidity;

gaugeTemp.value = temp;

gaugeHum.value = hum;
}

};

xhr.open("GET", "/readings", true);

xhr.send();

}

if (!!window.EventSource) {

var source = new EventSource('/events');

source.addEventListener('open', function(e) {

console.log("Events Connected");
}, false);

source.addEventListener('error', function(e) {

if (e.target.readyState != EventSource.OPEN) {

console.log("Events Disconnected");

}
}, false);

source.addEventListener('message', function(e) {

console.log("message", e.data);

}, false);

source.addEventListener('new_readings', function(e) {

console.log("new_readings", e.data);

var myObj = JSON.parse(e.data);

console.log(myObj);

gaugeTemp.value = myObj.temperature;

gaugeHum.value = myObj.humidity;
}, false);

73

}

This code does:

 initializing the event source protocol;
 adding an event listener for the new_readings event;
 creating the gauges;
 getting the latest sensor readings from the new_readings event and display

them in the corresponding gauges;
 making an HTTP GET request for the current sensor readings when you access

the web page for the first time.

Get Readings

When you access the web page for the first time, we’ll request the server to get the current
sensor readings. Otherwise, we would have to wait for new sensor readings to arrive (via
Server-Sent Events), which can take some time depending on the interval that you set
on the server.

Add an event listener that calls the getReadings function when the web page loads.

// Get current sensor readings when the page loads

window.addEventListener('load', getReadings);

The window object represents an open window in a browser. The addEventListener()

method sets up a function to be called when a certain event happens. In this case,

we’ll call the getReadings function when the page loads (‘load’) to get the current

sensor readings.

Now, let’s take a look at the getReadings function. Create a new XMLHttpRequest

object. Then, send a GET request to the server on the /readings URL using the open()

and send() methods.

function getReadings() {

var xhr = new XMLHttpRequest();
xhr.open("GET", "/readings", true);

xhr.send();

}

When we send that request, the ESP will send a response with the required information.

So, we need to handle what happens when we receive the response. We’ll use the

onreadystatechange property that defines a function to be executed when the readyState

property changes. The readyState property holds the status of the XMLHttpRequest. The

response of the request is ready when the readyState is 4, and the status is 200.

 readyState = 4 means that the request finished and the response is ready;

 status = 200 means “OK”
So, the request should look something like this:

function getStates(){

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function() {

74

if (this.readyState == 4 &&this.status == 200) {
… DO WHATEVER YOU WANT WITH THE RESPONSE …

}

};
xhr.open("GET", "/states", true);

xhr.send();

}

The response sent by the ESP is the following text in JSON format (those are just

arbitrary values).

{
"temperature" : "25.02",

"humidity" : "64.01",

}
We need to convert the JSON string into a JSON object using the parse() method. The

result is saved on the myObj variable.

var myObj = JSON.parse(this.responseText);

The myObj variable is a JSON object that contains the temperature and humidity readings.

We want to update the gauges values with the corresponding readings.

Updating the value of a gauge is straightforward. For example, our temperature gauge

is called gaugeTemp (as we’ll see later on), to update a value, we can simply call:

gaugeTemp.value = NEW_VALUE. In our case, the new value is the temperature reading

saved on the myObj JSON object.

gaugeTemp.value = myObj.temperature;

It is similar for the humidity (our humidity gauge is called gaugeHum).

gaugeHum.value = myObj.humidity;

Here’s the complete getReadings() function.

function getReadings(){

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function() {

if (this.readyState == 4 &&this.status == 200) {

var myObj = JSON.parse(this.responseText);

console.log(myObj);

var temp = myObj.temperature;

var hum = myObj.humidity;

gaugeTemp.value = temp;

gaugeHum.value = hum;

}

};

xhr.open("GET", "/readings", true);
xhr.send();

}

Reference: https://randomnerdtutorials.com/esp32-web-server-gauges/

Output:

75

Result: The above experiment is designed and executed successfully.

Experiment – 9

Aim: Controlling LEDs/Motors from an Android/Web app, Controlling AC Appliances

from an android/web app with the help of relay.

Procedure

76

Home automation: circuit and working

The home automation circuit is built around an Arduino Uno board, Bluetooth module HC-05 and a 3-

channel relay board. The number of channels depends on the number of appliances you wish to control.

Arduino Uno is powered with a 12V DC adaptor/power source. The relay module and Bluetooth module

can be, in turn, powered using a board power supply of Arduino Uno. Author’s prototype is shown in Fig.

1. Connection details for each appliance are shown in Fig. 2.

Prototype Model

Connections for the appliances

Bluetooth module

Bluetooth module used in this project is HC-05 (Fig. 4), which supports master and
slave mode serial communication (9600-115200 bps) SPP and UART interface. Using
these features it can communicate with other Bluetooth-enabled devices like mobile
phones, tablets and laptops. The module runs on 3.3V to 5V power supply.

77

Control panel on Android smartphone

Relay module

A relay allows you to turn on or turn off a circuit using voltage and/or current much
higher than what Arduino could handle. Relay provides complete isolation between the
low-voltage circuit on Arduino side and the high-voltage side controlling the load. It
gets activated using 5V from Arduino, which, in turn, controls electrical appliances like
fans, lights and air-conditioners. An 8-channel relay module is shown in below.

Arduino Uno board

Arduino is an open source electronics prototyping platform based on flexible, easy-to-
use hardware and software. It is intended for artists, designers, hobbyists and anyone
interested in creating interactive objects or environments.

Arduino Uno is based on ATmega328 microcontroller (MCU). It consists of 14 digital
input/output pins, six analogue inputs, a USB connection for programming the onboard
MCU, a power jack, an ICSP header and a reset button. It is operated with a 16MHz crystal
oscillator and contains everything needed to support the MCU. It is very easy to use as
you simply need to connect it to a computer using a USB cable, or power it with an AC-to-
DC adapter or battery to get started. The MCU onboard is programmed in Arduino
programming language using Arduino IDE.

https://opensourceforu.com/
https://www.electronicsforu.com/videos-slideshows/introduction-to-arduino-programming
https://www.electronicsforu.com/videos-slideshows/introduction-to-arduino-programming

78

Bluetooth module

In this home automation project circuit, Pins 10 and 11 of Arduino are connected to
pins TXD and RXD of the Bluetooth module, respectively, as shown in Fig. 6.

Pins Gnd and Vcc of the Bluetooth module are connected to Gnd and +3.3V of Arduino
board respectively. Pins 2, 3 and 4 are connected to the three relays (RL1, RL2 and
RL3) of the relay board. Pins Vin and Gnd of the relay board are connected to pins Vin
and Gnd of Arduino board, respectively.

Note. Vin is usually used to give input power, but since we are supplying 12V to
Arduino using an adaptor, we can use Vin pin on Arduino to power the 12V relay
module.

An 8-channel relay module

Relay module connection

79

Software

The software program for the home automation project(homeautomation.ino) is written
in Arduino programming language called Processing. Arduino Uno is programmed using
Arduino IDE software that you can download from arduino.cc. MIT App Inventor
software was used to create the Android app (.apk) for this project.

The app on your smartphone sends data when you click on buttons or feed voice
commands via Bluetooth in the mobile to Bluetooth module HC-05 connected with
Arduino board. Received data pin TXD of the HC-05 is connected to Arduino. Arduino
Uno processes the received data and controls the relay board accordingly.

Procedure for installing the Android app (.apk) is as follows:
1. Download the app (homeautomation.apk).
2. Run .apk file. It will prompt you to complete the action. Click Package Installer and
then Install.
3. You will also need a voice-recognition app on your Android smartphone. Most
smartphones have this app preinstalled. If you do not have it, download one from
Google Play Store.

Arduino Code

#include <SoftwareSerial.h>
SoftwareSerialBT(10, 11); //TX, RX pins of arduinorespetively
String command;
void setup()
{
BT.begin(9600);
Serial.begin(9600);
pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
pinMode(4, OUTPUT);
}

void loop() {

while (BT.available()){ //Check if there is an available byte to read
delay(10); //Delay added to make thing stable

char c = BT.read(); //Conduct a serial read
command += c; //build the string.
}
if (command.length() > 0) {

Serial.println(command);
if(command == "light on") //this command will be given as an input to switch on
light1

{
digitalWrite(2, HIGH);

}
else if(command == "light off") //this command will be given as an input to switch

off light1 simillarly other commands work

80

{
digitalWrite(2, LOW);

}
else if (command == "lamp on")
{

digitalWrite (3, HIGH);
}
else if (command == "lamp off")

{
digitalWrite (3, LOW);
}
else if (command == "fan on")

{
digitalWrite (4, HIGH);
}
else if (command == "fan of")

{
digitalWrite (4, LOW);
}
else if (command == "all on") //using this command you can switch on all devices

{
digitalWrite (2, HIGH);
digitalWrite (3, HIGH);
digitalWrite (4, HIGH);
}
else if (command == "off")//using this command you can switch off all devices

{
digitalWrite (2, LOW);
digitalWrite (3, LOW);
digitalWrite (4, LOW);
}

command="";}} //Reset the variable
//you can add other command to control addition devices by adding an elseif
//and the additions commands you add in sketch can be given through voice
regonisation as i have created the app buttons only to control three devices

Construction and testing

Assemble the circuit as shown in the circuit diagram. Open Arduino IDE and compile
the program (sketch). Upload the sketch (homeautomation.ino) to Arduino board.
Switch on the power supply to Arduino by connecting it to 12V power source. Pair
Bluetooth module with your Android phone. Type password ‘1234’ (default password)
of Bluetooth module.

Click Bluetooth Image on the app to connect it with the Bluetooth module. It
automatically connects and displays as Connected in the app.

You are now ready to control the appliances using the app. You can either use on/off
buttons or voice commands to control the appliances. You can control more electrical

81

appliances by increasing the number of channels in the relay. For instance, using an 8-
channel relay, you can control up to eight devices. For this, you need to alter the source
code by adding input commands and voice commands to control the devices

Result: The above experiment is designed and executed successfully.

Experiment – 10

82

Aim: Displaying humidity and temperature data on a web-based application

Procedure

Using Internet of Things (IOT), we can control any electronic equipment in homes and

industries. Moreover, you can read a data from any sensor and analyse it graphically

from anywhere in the world. Here, we can read temperature and humidity data from

DHT11 sensor and upload it to a Thing Speak cloud using Arduino Uno and

ESP8266-01 module. Arduino Uno is MCU, it fetch a data of humidity and temperature

from DHT11 sensor and Process it and give it to a ESP8266 Module.ESP8266 is a WiFi

module, it is one of the leading platform for Internet of Things. It can transfer a data to

IOT cloud.

Hardware Requirements

 Arduino Uno

 ESP8266-01

 DHT11

 AMS1117-3.3V

 9V battery

Software Requirements

 Arduino IDE

Circuit and Working

First make the connection as shown in fig: 1.1.The 2nd pin is of DHT11 is a data pin,
it can send a temperature and humidity value to the 5th pin of Arduino Uno.1st and
4th pin of DHT11 is a Vcc and Gnd and 3rd pin is no connection. The Arduino Uno
processes a temperature and humidity value and send it to a ESP8266 WiFi module.
The Tx and Rx pin of ESP8266 is connected to the 2nd (Rx) and 3rd (Tx) of Arduino Uno.
Make sure that input voltage of ESP8266 must be 3.3V, not a 5V (otherwise it would
damage a device).For that, we are using AMS1117 Voltage regulator circuit. It can
regulate a voltage from 9V to 3.3V and will give it to Vcc pin of ESP8266.The Ch_Pd is a
chip enable pin of ESP8266 and should be pullup to 3.3V through 3.3KΩ resistor. For
reset the module pull down the RST pin of ESP8266 to Gnd.ESP8266 have 2
GPIO pins GPIO 0 and GPIO 2.

83

Fig 1.1: Circuit diagram for monitoring Humidity and Temperature in IOT cloud

Construction and Testing

ThingSpeak is an open source platform to store and retrieve a data for Internet of

Things application. To use this, you need to register in Things Speak cloud and then

login to your account. After create a new channel with temperature in one field and

humidity in another field as shown in Fig: 1.2. Once you created a new channel, it will

generate a two API keys, they are READ API keys and WRITE API keys. First, copy the

WRITE API keys from Things Speak and paste it into the line (String apiKey

= “OX9T8Y9OL9HD0UBP”;) of the program. Next, replace the Host_Name and Password

with your WiFi name and WiFi password in the two lines given below in the program.

(String Host_Name = “Pantech” and String Password = “pantech123”)

The Arduino program Uses DHT library, if it is not presented in your arduino IDE, select

SketchàInclude libraryàManage librariesàInstall DHT Sensor library. Then compile the

program and upload to a Arduino Uno through Arduino IDE. Ensure that WiFi modem

and internet connection in your Smartphone or PC are working properly. After

uploaded a program, the Temperature and Humidity data is uploaded on ThingSpeak

platform. You can see it graphically in the private view window of your channel as

shown in Fig: 1.3. And you can able to see the uploaded data from serial port of Arduino

IDE.

84

85

Arduino Code

#include "DHT.h"
#include
#define DHTPIN 5 // Digital Pin 5

#define DHTTYPE DHT11 // We are Using DHT11

String apiKey = "OX9T8Y9OL9HD0UBP"; // Edit this API key according to your
Account
String Host_Name = "Pantech"; // Edit Host_Name
String Password = "pantech123"; // Edit Password
SoftwareSerialser(2, 3); // RX, TX
int i=1;
DHT dht(DHTPIN, DHTTYPE); // Initialising Pin and Type of DHT
void setup() {
Serial.begin(115200); // enable software serial
ser.begin(115200); // reset ESP8266
ser.println("AT+RST"); // Resetting ESP8266
dht.begin(); // Enabling DHT11
char inv ='"';
String cmd = "AT+CWJAP";
cmd+= "=";
cmd+= inv;
cmd+= Host_Name;
cmd+= inv;
cmd+= ",";
cmd+= inv;
cmd+= Password;
cmd+= inv;
ser.println(cmd); // Connecting ESP8266 to your WiFi Router

}

// the loop

void loop() {
int humidity = dht.readHumidity(); // Reading Humidity Value
int temperature = dht.readTemperature(); // Reading Temperature Value
String state1=String(humidity); // Converting them to string
String state2=String(temperature); // as to send it through URL
String cmd = "AT+CIPSTART=\"TCP\",\""; // Establishing TCP connection

cmd += "184.106.153.149"; // api.thingspeak.com
cmd += "\",80"; // port 80
ser.println(cmd);
Serial.println(cmd);
if(ser.find("Error")){
Serial.println("AT+CIPSTART error");

return;
}

String getStr = "GET /update?api_key="; // prepare GET string

86

getStr += apiKey;
getStr +="&field1=";
getStr += String(state1); // Humidity Data
getStr +="&field2=";
getStr += String(state2); // Temperature Data
getStr += "\r\n\r\n";
cmd = "AT+CIPSEND=";
cmd += String(getStr.length()); // Total Length of data
ser.println(cmd);

Serial.println(cmd);
if(ser.find(">")){
ser.print(getStr);
Serial.print(getStr);

}
else{
ser.println("AT+CIPCLOSE"); // closing connection

// alert user
Serial.println("AT+CIPCLOSE");

}
delay(1000); // Update after every 15 seconds

}

Result: The above experiment is designed and executed successully

