

NAAC 'A' Grade | Approved by AICTE | Affiliated to Anna University

ACADEMIC CURRICULUM (REGULATION 2022) FOR UNDER GRADUATE PROGRAMMES CHOICE BASED CREDIT SYSTEM

(Applicable to the students admitted from the Academic Year 2022 –2023 onwards)

B.Tech- AGRICULTURAL ENGINEERING

AUTONOMOUS

NAAC 'A' Grade | Approved by AICTE | Affiliated to Anna University

REGULATIONS 2022 B.Tech- AGRICULTURAL ENGINEERING

ABOUT THE DEPARTMENT:

Agricultural Engineering program was established in the year 2020 with intake of 30 students. Agricultural Engineering deals with the study of agricultural processes and usage of technology with the aim to improve efficiency in food production. Agriculture is the largest participant in the Indian Economy. It is needless to say that a career in Agriculture in India is nothing but bright and shining.

Agriculture Engineering is the area of engineering concerned with the design, construction and improvement of farming equipment and machinery. Agriculture Engineers integrate technology with farming. For example, they design new and improved farming equipment that may work more efficiently, or perform new tasks. They may also help engineer solutions for pollution control at large farms. They may also design food storage structures and food processing plants. Some may design housing and environments for livestock. They may also plan and oversee land reclamation projects on farms. Others may be involved in agricultural waste-to-energy projects and carbon sequestration (absorbing carbon dioxide from the atmosphere into the soil, crops and trees).

VISION:

To develop Agriculture Engineering professionals, create and disseminate knowledge, and promote the application of engineering principles to meet the societal needs with respect to agriculture, farm mechanization, irrigation, soil and water conservation.

MISSION:

- 1. To ensure effective teaching learning process for educating and training future Agricultural professionals to face various agricultural challenges.
- 2. To promote research and training on sustainable development of agricultural productivity, economic farming, smart farming techniques, food processing and irrigation systems.
- 3. To empower students with various aspects of agriculture through integrated teaching methodologies, advanced laboratory activities, field visits, extensive training workshops and guest lectures.

4. To maintain a good rapport with leading industries and Agri-tech companies to succeed in Industry Institute Collaboration for training students based on the latest industrial needs.

PROGRAMME EDUCATIONAL OBJECTIVES:

- 1. To train and educate students with general knowledge and skills in agricultural water management, agricultural production process, farm machinery and farm management.
- 2. To provide a sound theoretical knowledge in engineering principles applied to agriculture.
- 3. To prepare students for a successful agricultural engineering career integrating all aspects of engineering in agriculture.
- 4. To develop innovative capacity of students for increasing agricultural production with scarce water resources available.
- 5. To impart positive and responsive out their mission as Engineers. To reach attitudes, initiative and creative thinking in their mission as engineers.
- 6. To understand ethical issues and responsibility of serving the society and the environment at large.

PROGRAMME OUTCOMES (POs):

Graduates of the programme B.Tech. Agricultural Engineering will be able to:

PO1 - Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2 - Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 - Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4 - Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5 - Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6 - The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7 - Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 - Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 - Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 - Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 - Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change **PROGRAMME SPECIFIC OUTCOMES (PSOs)**:

PSO-1: To make expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill.

PSO-2: To enhance the ability of the students to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies.

PSO-3: To inculcate entrepreneurial skills through strong Industry-Institution linkage.

B.Tech. AGRICULTURAL ENGINEERING CURRICULUM FOR SEMESTERS I TO VIII AND SYLLABI FOR SEMESTERS I TO VIII SEMESTER I											
S.No	COURSE CODE	COURSE TITLE	MODE	DE PERIODS PER WEEK			ТСР	С	САТ		
MANDA				-	•	•	U				
*	22IP100	Induction Programme	-	-	-	-	-	03 Weeks	0	-	
THEORY	COURSES	~									
1	22HST101	Professional English	L+P	3	0	2	0	5	4	HSMC	
2	22BST101	Basic Mathematics for Engineers	L	3	2	0	0	5	4	BSC	
3	22BST102	Engineering Physics	L	3	0	0	0	3	3	BSC	
4	22BST103	Engineering Chemistry	L	3	0	0	0	3	3	BSC	
5	22EST101	Problem Solving and Python Programming	L	3	0	0	0	3	3	ESC	
6	22HSM101	Heritage of Tamils	L	1	0	0	0	1	1	HSMC	
EMPLOY	ABILITY ENH	ANCEMENT COURS	E								
7	22EET102	Skill Development Training-I (Student READY)	L+P	1	0	2	0	3	2	EEC	
PRACTIO	CAL COURSES	3									
8	22ESP101	Problem Solving and Python Programming Laboratory	Ρ	0	0	4	0	4	2	ESC	
9	22BSP101	Physics and Chemistry Laboratory	Ρ	0	0	4	0	4	2	BSC	
EMPLOY	ABILITY ENH	ANCEMENT COURS	E								
10	1022EEP101Product Tinkering LaboratoryP002021EEC										
	TOTAL 17 02 14 00 33 25										
L	L- Lecture T- Tutorial P- Practical J- Project C- Credits CAT- Category						· Total	Contact Pe	riods		

SEMESTER II												
S.No	COURSE CODE	COURSE TITLE	MODE	PE L	ERIOI WE T	DS PE EK P	ER J	ТСР	С	САТ		
THEORY COURSES												
1		Language Elective	L+P	2	0	4	0	6	4	HSMC		
2	22BST202	Statistics and Numerical Methods	L	3	2	0	0	5	4	BSC		
3	22AGT201	Principles of Crop Production and Agronomy	L+P	2	0	2	0	4	3	PCC		
4	22EST201	Basic Electrical, Electronics Engineering and Measurements	L	3	0	0	0	3	3	ESC		
5	22EST202	Engineering Graphics	L+P	1	0	4	0	5	3	ESC		
6	22HSM201	Tamils and Technology	L	1	0	0	0	1	1	HSMC		
EMPLOY	ABILITY ENH	ANCEMENT COURSE		I								
7	22EET202	Skill Development Training-II (Student READY)	L	2	0	0	0	2	2	EEC		
MANDA	FORY COURS	E										
8		NCC/NSS/YRC Credit Course Level- I	-	1	0	0	0	1	1#	-		
PRACTIO		S										
9	22ESP201	Engineering Product Laboratory	Ρ	0	0	3	0	3	1.5	ESC		
10	22ESP202	Basic Electrical, Electronics Engineering and Measurements Laboratory	Р	0	0	3	0	3	1.5	ESC		
	TOTAL 14 02 16 00 32 23											
	L- Lecture T- Tutorial P- Practical J- Project					P- Tot	al Co	ntact Pe	eriods			

C- Credits CAT- Category

NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA. *Common for all branches

SEMESTER III

S No	COURSE		MODE	PERIODS PER WEEK				тер	C	САТ
3.110	CODE	COURSE IIILE	WODE	L	Т	Ρ	J	TCF	0	CAT
THEOR	Y COURSES									
1	22BST303	Fourier Series and Linear Programming	L	3	2	0	0	5	4	BSC
2	22AGT301	Principles of Soil Science and Engineering	L	3	0	0	0	3	3	PCC
3	22AGT302	Unit Operations in Agricultural Processing	L+P	2	0	2	0	4	3	PCC
4	22AGT303	Fluid Mechanics and Pumps	L	3	0	0	0	3	3	PCC
5	22AGT304	Surveying and Levelling	L	3	0	0	0	3	3	PCC
PRACTI	CAL COURSES									
6	22AGP301	Fluid Mechanics Laboratory	Р	0	0	4	0	4	2	PCC
7	22AGP302	Soil Science Laboratory	Р	0	0	4	0	4	2	PCC
8	22AGP303	Surveying and Levelling Laboratory	Р	0	0	4	0	4	2	PCC
			TOTAL	14	02	14	00	30	22	

L- Lecture T- Tutorial P- Practical J- Project TCP- Total Contact Periods C- Credits CAT- Category

* Common to all branches

** Common to all branches, selection from one minor vertical/approved honors subjects

SEMESTER IV

S.N	COURSE		MODE PER	IODS I	PER W	'EEK	ТСР	C	САТ	
0	CODE		MODE	L	Т	Ρ	J		U	
THEC	DRY COURSES									
1	22AGT401	Tractors and Engine Systems	L	3	0	0	0	3	3	ESC
2	22AGT402	Soil and Water Conservation Engineering	L	3	0	0	0	3	3	PCC
3	22AGT403	Strength of Materials for Agricultural Engineering	L	3	0	0	0	3	3	PCC
4	22AGT404	Hydrology and Water Resources Engineering	L	3	0	0	0	3	3	PCC
5	22AGT405	Engineering Thermodynamics	L	3	0	0	0	3	3	ESC
MAN	DATORY COU	RSE								
6	22BST401	Environmental Sciences and Sustainability	L	2	0	0	0	2	2	BSC
7		NCC/NSS/YRC Credit Course Level- II	-	1	0	0	0	1	1#	-
PRAC	CTICAL COURS	SES								
8	22AGP401	Tractors and Farm Engines Laboratory	Ρ	0	0	4	0	4	2	PCC
9	22AGP402	Strength of Materials Laboratory	Р	0	0	4	0	4	2	PCC
EMPI		NHANCEMENT COURSE								
10	22EEP401	Quantitative Analysis and Logical Reasoning-I	Ρ	0	0	2	0	2	1	EEC
			TOTAL	17	00	10	00	27	22	
	L- Lecture T- Tutorial P- Practical J- Project					- Tota	I Conta	act Perio	ods	

C- Credits CAT- Category

* Common to all branches

** Common to all branches, selection from one minor vertical/approved honors subjects # NCC Credit Course level II is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

SEMESTER V

S.N	COURSE COURSE TITLE MODE PERIODS PER WEEK				EEK	TCP	C	САТ		
0	CODE		MODE	L	Т	Р	J		0	U AI
THEC		ES								
1	22AGT501	Farm Equipment and Machinery	L	3	0	0	0	3	3	PCC
PROFESSIONAL ELECTIVE										
2		Professional Elective I	L	3	0	0	0	3	3	PEC
3		Professional Elective II	L	3	0	0	0	3	3	PEC
4		Professional Elective III	L	3	0	0	0	3	3	PEC
5		Professional Elective IV	L	3	0	0	0	3	3	PEC
MAN	DATORY CO	URSE								
6		Mandatory Course - I	L	3	0	0	0	3	0	MCC
ENRO	DLLMENT FC	R B.E. / B. TECH. (HONO	URS) / M	INOR	DEGRE	EE (OP	TIONA	L)		
7		Minor/Honour/ remedial class **	L	3	0	0	0	3	3**	PEC**
PRAC	TICAL COU	RSES								
8	22AGP501	Farm Machinery Laboratory	Р	0	0	4	0	4	2	PCC
9	22AGP502	ICT in Agricultural Engineering Laboratory	Р	0	0	2	0	2	1	PCC
10	22AGP503	CAD for Agriculture Machinery Laboratory	Р	0	0	4	0	4	2	PCC
EMPL	EMPLOYABILITY ENHANCEMENT COURSE									
11	22AGP504	3 weeks Industrial Attachment /Internship		0	0	0	0	0	1	EEC
			TOTAL	18	00	06	00	24	21	

L- Lecture T- Tutorial P- Practical J- Project TCP- Total Contact Periods C- Credits CAT- Category

* Common to all branches

** Common to all branches, selection from one minor vertical/approved honors subjects SEMESTER VI

S.N	COURSE		MODE	E PERIODS PER WEE		VEEK	тер	C	САТ			
0	CODE	COURSE IIILE	WODE	L	Т	Ρ	J	ICF	C	CAT		
THEC	DRY COURSE	S										
1	22AGT601	Post-Harvest Technology	L	3	0	0	0	3	3	PCC		
2	22AGT602	Irrigation and Drainage Engineering	L	3	0	0	0	3	3	PCC		
OPE	N ELECTIVE											
3		Open Elective-I	L	3	0	0	0	3	3	OEC		
PRO	PROFESSIONAL ELECTIVE											
4		Professional Elective - V	L	3	0	0	0	3	3	PEC		
5		Professional Elective - VI	L	3	0	0	0	3	3	PEC		
MAN	DATORY COU	IRSE										
6		Mandatory Course - II	L	3	0	0	0	3	0	MCC		
7		NCC/NSS/YRC Credit Course Level- III	-	1	0	0	0	1	1#	-		
ENRO		R B.E. / B.TECH. (HONOUR	S) / MINC	or de	GREE	(OPTI	ONAL)				
8		Minor/Honour/ remedial class**		3	0	0	0	3	3**	PEC**		
PRAG	CTICAL COUR	SES - EMPLOYABILITY EN	HANCEN	/IENT	COUF	SE						
9	22AGP604	3 weeks Experiential Learning On campus		0	0	0	0	0	2	EEC		
10	22EEP601	Quantitative Analysis and Logical Reasoning-II		0	0	2	0	2	1	EEC		
11	22EEP602	Comprehensive Assessment*		0	0	1	0	1	1	EEC		
PRAG	CTICAL COUR	SES				1						
12	22AGP601	Post – Harvest Technology Laboratory	Р	0	0	3	0	3	1.5	PCC		
13	22AGP602	Irrigation Field Laboratory	Р	0	0	3	0	3	1.5	PCC		
			TOTAL	18	00	13	00	31	22			
	L- Lecture	T- Tutorial P- Practica	I J- Pro	ject	TCI	- Tota	al Cont	act Peri	ods			
	C- Credits	CAT- Category										

* Common to all branches

** Common to all branches, selection from one minor vertical/approved honors subjects # NCC Credit Course level III is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

S.N	COURSE		MODE	PERI	ODS I	PER V	VEEK	ТСР	C	САТ
0	CODE	COURSE IIILE	WODE	L	Т	Ρ	J	ICF	C	GAT
THEC	ORY COURSES									
1	22AGT701	Remote Sensing and Geographical Information System	L	3	0	0	0	3	3	PCC
2	22AGT702	Renewable Energy in Agricultural Engineering	L	3	0	0	0	3	3	PCC
3	22HST701	Total Quality Management	L	3	0	0	0	3	3	HSMC
OPEN	I ELECTIVE									
4		Open Elective-II	L	3	0	0	0	3	3	OEC
ENRC	OLLMENT FOR I	B.E. / B.TECH. (HONOUF	RS) / MINC	OR DEC	GREE	(OPT	IONAL)		
5		Minor/Honour/ remedial class **	L	3	0	0	0	3	3**	PEC**
PRAC	CTICAL COURSI	ES								
6	22AGP701	Remote Sensing and GIS Laboratory	Ρ	0	0	4	0	4	2	PCC
7	22AGP702	Renewable Energy in Agricultural Engineering Laboratory	Р	0	0	4	0	4	2	PCC
PRAC	CTICAL COURSI	ES - EMPLOYABILITY EI	NHANCEN	MENT (COUR	SE				
8	22AGP703	Mini Project	J	0	0	0	4	4	2	EEC
9	22AGP704	Industrial Exposure Visit (Registration only)	J	0	0	0	0	0	1	EEC
			TOTAL	12	00	08	04	24	19	

SEMESTER VII

L- Lecture T- Tutorial P- Practical J- Project TCP- Total Contact Periods

C- Credits CAT- Category

* Common to all branches

** Common to all branches, selection from one minor vertical/approved honors subjects

	SEMESTER VIII											
S.N	COURSE	COURSE TITLE	MODE	PE	erioi We	DS P EK	ER	тср	C	САТ		
0	CODE		MODE	L	Т	Ρ	J	101	0			
ENRO	ENROLLMENT FOR B.E. / B.TECH. (HONOURS) / MINOR DEGREE (OPTIONAL)											
1		Minor/Honour/remedial class **	L	3	0	0	0	3	3**	PEC**		
PRAG	CTICAL COURS	SES - EMPLOYABILITY ENH	IANCEM	ENT	COU	RSE						
2	22AGP801	Project Work	J	0	0	0	20	20	10	EEC		
	TOTAL 00 00 00 20 20 10											

L- Lecture T- Tutorial P- Practical J- Project TCP- Total Contact Periods

C- Credits CAT- Category

** Common to all branches, selection from one minor vertical/approved honors subjects

LANGUAGE ELECTIVE

	Language Elective Choose any one Elective (Semester II)										
S.No	S.No Course Course Name L T P Contact Hours Credits										
1	22LET201	Functional English	3	0	2	5	4				
2	22LET202	French Language Level 1	2	0	4	6	4				
3	22LET203	German Level A1.1	2	0	4	6	4				
4	22LET204	Basic Japanese	2	0	4	6	4				

MANDATORY COURSES - I & II

Mandatory Courses I – Choose any one Course (Semester V)											
S.No.	Course Code	Course Name	L	Т	Р	Contact Hours	Credits				
1	22MCT001	Introduction to Women and Gender Studies	3	0	0	3	0				
2	22MCT002	Elements of Literature	3	0	0	3	0				
3	22MCT003	Film Appreciation	3	0	0	3	0				
4	22MCT004	Well Being with Traditional Practices - Yoga, Ayurveda and Siddha	3	0	0	3	0				
5	22MCT007	Industrial Safety	3	0	0	3	0				

	Mandatory Courses II– Choose any one Course (Semester VI)											
S.No	Course Code	Course Name	L	т	Ρ	Contact Hours	Credits					
1	22MCT009	History of Science and Technology in India	3	0	0	3	0					
2	22MCT010	Political and Economic Thought for a Humane Society	3	0	0	3	0					
3	22MCT011	State, Nation Building and Politics in India	3	0	0	3	0					
4	22MCT012	Disaster Risk Reduction and Management	3	0	0	3	0					

PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL I Food Processing	VERTICAL II Farm Machinery and Energy	VERTICAL III Water Management and Protected Cultivation	VERTICAL IV IT and Agricultural Business Management
Refrigeration and Cold Storage	Farm Power and Machinery Management	Watershed Planning and Management	Integrated Farming System
Food and Dairy Engineering	Testing and Evaluation of Farm Machinery and Equipment	Groundwater and Well Engineering	Agricultural Business Management
Process Engineering of Fruits and Vegetables	Biochemical and Thermochemical Conversion of Biomass	Design of Micro- Irrigation System	Sustainable Agriculture and Food Security
Storage and Packaging Technology	Waste and by-Product Utilization	Protected Cultivation	Systems Analysis in Agricultural Engineering
Food Process Equipment and Design	Human Engineering and Safety in Farm Machinery Operations	On-farm Water Management	IT in Agricultural System
Food Plant Design and Management	Precision Farming Equipment	Irrigation Water Quality and Waste Water Management	Automation in Agriculture
Emerging Technologies in Food Processing	Solar and Wind Energy System	Climate Change and Adaptation	Landscape Architecture
Development of processed products	Mechanics of tillage and traction	Management of canal irrigation system	Software applications in soil & water
Engineering properties of agricultural produce	Tractor and farm machinery operation and maintenance	Land and water management applications using google earth engine	Fundamentals of management for engineers
Instrumentation and sensors in food processing	Hydraulic drives and control	Water harvesting and soil conservation structures	

Registration of Professional Elective Courses from Verticals:

- Professional Elective Courses will be registered in Semesters V and VI.
- These courses are listed in groups called verticals that represent a particular area of specialisation.
- Students are permitted to choose all the Professional Electives from a particular vertical or from different verticals.
- Further, only one Professional Elective course shall be chosen in a semester horizontally (row-wise).
- However, two courses are permitted from the same row, provided one course is enrolled in Semester V and another in semester VI.
- The registration of courses for B.E./B.Tech (Honours) or Minor degree shall be done from Semester V to VIII. The procedure for registration of courses explained above shall be followed for the courses of B.E/B.Tech (Honours) or Minor degree also

PROFESSIONAL ELECTIVE COURSES

VERTICAL I: FOOD PROCESSING

SL.	COURSE	COURSE NAME	CATE	PEI PER	RIO WE	DS EK		CREDITS	
NO.	CODE		GORY	L	Т	Ρ	PERIODS		
1.	22AGPE01	Refrigeration and Cold Storage	PEC	3	0	0	3	3	
2.	22AGPE02	Food and Dairy Engineering	PEC	3	0	0	3	3	
3.	22AGPE03	Process Engineering of Fruits and Vegetables	PEC	3	0	0	3	3	
4.	22AGPE04	Storage and Packaging Technology	PEC	3	0	0	3	3	
5.	22AGPE05	Food Process Equipment and Design	PEC	3	0	0	3	3	
6.	22AGPE06	Food Plant Design and Management	PEC	3	0	0	3	3	
7.	22AGPE07	Emerging Technologies in Food Processing	PEC	3	0	0	3	3	
8.	22AGPE08	Development of processed products	PEC	3	0	0	3	3	
9.	22AGPE09	Engineering properties of agricultural produce	PEC	3	0	0	3	3	
10.	22AGPE10	Instrumentation and sensors in food processing	PEC	3	0	0	3	3	

VERTICAL II: FARM MACHINERY AND ENERGY

SL.	COURSE	COURSE NAME	CATE	PEI PER	RIO WE	DS EK	TOTAL CONTACT	CREDITS
NO.	CODE		GORT	LT		Ρ	PERIODS	
1.	22AGPE11	Farm Power and Machinery Management	PEC	3	0	0	3	3
2.	22AGPE12	Testing and Evaluation of Farm Machinery and Equipment	PEC	3	0	0	3	3
3.	22AGPE13	Biochemical and Thermochemical Conversion of Biomass	PEC	3	0	0	3	3
4.	22AGPE14	Waste and by-Product Utilization	PEC	3	0	0	3	3
5.	22AGPE15	Human Engineering and Safety in Farm Machinery Operations	PEC	3	0	0	3	3

6.	22AGPE16	Precision Farming Equipment	PEC	3	0	0	3	3
7.	22AGPE17	Solar and Wind Energy System	PEC	3	0	0	3	3
8.	22AGPE18	Mechanics of tillage and traction	PEC	3	0	0	3	3
9.	22AGPE19	Tractor and farm machinery operation and	PEC	3	0	0	3	3
10	22AGPE20	Hydraulic drives and control	PEC	3	0	0	3	3

VERTICAL III: WATER MANAGEMENT AND PROTECTED CULTIVATION

SL.	COURSE	COURSE NAME	CATE	F PE	Perioi Er We	DS EK	TOTAL CONTACT	CREDITS	
NO.	CODE		GORY	L	Т	Ρ	PERIODS		
1.	22AGPE21	Watershed Planning and Management	PEC	3	0	0	3	3	
2.	22AGPE22	Groundwater and Well Engineering	PEC	3	0	0	3	3	
3.	22AGPE23	Design of Micro- Irrigation System	PEC	3	0	0	3	3	
4.	22AGPE24	Protected Cultivation	PEC	3	0	0	3	3	
5.	22AGPE25	On-farm Water Management	PEC	3	0	0	3	3	
6.	22AGPE26	Irrigation Water Quality and Waste Water Management	PEC	3	0	0	3	3	
7.	22AGPE27	Climate Change and Adaptation	PEC	3	0	0	3	3	
8.	22AGPE28	Management of canal irrigation	PEC	3	0	0	3	3	
9.	22AGPE29	Land and water management	PEC	3	0	0	3	3	
10.	22AGPE30	Water harvesting and	PEC	3	0	0	3	3	

SL.	COURSE CODE	COURSE NAME	CATE	PE PE	erio R We	DS EK	TOTAL CONTACT	CREDITS
NO.			GORY	L	Т	Р	PERIODS	
1.	22AGPE31	Integrated Farming System	PEC	3	0	0	3	3
2.	22AGPE32	Agricultural Business Management	PEC	3	0	0	3	3
3.	22AGPE33	Sustainable Agriculture and Food Security	PEC	3	0	0	3	3
4.	22AGPE34	Systems Analysis in Agricultural Engineering	PEC	3	0	0	3	3
5.	22AGPE35	IT in Agricultural System	PEC	3	0	0	3	3
6.	22AGPE36	Automation in Agriculture	PEC	3	0	0	3	3
7.	22AGPE37	Landscape Architecture	PEC	3	0	0	3	3
8.	22AGPE38	Software applications in soil & water	PEC	3	0	0	3	3
9.	22AGPE39	Fundamentals of management for	PEC	3	0	0	3	3

VERTICAL IV: IT AND AGRICULTURAL BUSINESS MANAGEMENT

OPEN ELECTIVES

OFFERED BY DEPARTMENT OF AGRICULTURAL ENGINEERING

OPEN ELECTIVES – I

SL.	COURSE		CATE	PERIODS PER WEEK			TOTAL CONTACT	0050170
NO.	CODE	COURSE IIILE	GORY	L	Т	Ρ	PERIODS	CREDITS
1.	22AGOE01	Traditional Indian Foods	OEC	3	0	0	3	3
2.	22AGOE02	Biodiversity	OEC	3	0	0	3	3
3.	22AGOE03	Energy Conservation	OEC	3	0	0	3	3
4.	22AGOE04	Drinking Water Supply and	OEC	3	0	0	3	3
5.	22AGOE05	Renewable Energy Technologies	OEC	3	0	0	3	3

OPEN ELECTIVES	– II
-----------------------	------

SL.	COURSE		CATE	PERIODS PER WEEK			TOTAL CONTACT		
NO.	CODE	COURSE IIILE	GORY	L	L T P		PERIODS	CREDITS	
1.	22AGOE06	Remote Sensing Concepts	OEC	3	0	0	3	3	
2.	22AGOE07	Introduction to food processing	OEC	3	0	0	3	3	
3.	22AGOE08	Drone Technologies	OEC	3	0	0	3	3	
4.	22AGOE09	Geographical Information System	OEC	3	0	0	3	3	
5.	22AGOE10	Basics of Integrated Water Resources	OEC	3	0	0	3	3	
6.	22AGOE11	Energy Technology	OEC	3	0	0	3	3	
7.	22AGOE12	Fundamentals of Food	OEC	3	0	0	3	3	
8.	22AGOE13	Food safety and Quality	OEC	3	0	0	3	3	

CREDIT DISTRIBUTION

Semester	HSMC	BSC	ESC	PCC	PEC	OEC	EEC	МС	TOTAL	Total PER %
I	05	12	05				03	-	25	15
П	05	04	09	03			02	-	23	14
ш		04		18				-	22	14
IV		02	06	13			01	-	22	14
v				08	12		01	-	21	12
VI				09	06	03	04	-	22	13
VII	03			10		03	03	-	19	12
VIII							10	-	10	06
TOTAL	13	22	20	61	18	06	24	-	164	100

	CATEGORY	Breakup of Credits	PER % in Total
HSMC	Humanities & Social Science Including Management	13	07
BSC	Basic Science Courses	22	13
ESC	Engineering Science Courses	20	12.5
PCC	Professional Core Courses	61	38
PEC	Professional Elective Courses	18	11
OEC	Open Elective Courses	06	04
EEC	Employment Enhancement Courses	24	14.5
MCC	Mandatory Courses	-	-
	Total Credits	164	100

NAAC 'A' Grade | Approved by AICTE | Affiliated to Anna University

SEMESTER I

Course Code	е	Course Title	L	Т	Ρ	J	С		
			2	0	4	0	4		
22HST101		PROFESSIONAL ENGLISH	S	ylla	bus	v	1 1		
			version						
COURSE OBJE	ECTI	VES:							
The course ena	The course enables the learner to								
1. Provide learners with basic vocabulary and grammar to recognise and use in real time contexts									
2. Improve	2. Improve communicative competence								
3. Help use	e the	language effectively in academic /work contexts							
4. Build lar	ngua	ge skills by engaging in listening, speaking, vocabular	y ar	ia g	framm	iar ie	aming		
5 Develop	tha	ability to read and write complex texts summaries a	rticle	he k	aloge	defin	itions		
essavs.	and	user manuals	nuore	, o, k	Jiogo,	uenn	nions,		
COURSE OUT	COM	E:							
After the comp	letio	n of this course, the students should be able to							
1. Become accustomed to the basic vocabulary and grammar									
2. Listen and c	comp	rehend complex academic texts							
3. Read and in	nfer th	ne denotative and connotative meanings of technical tex	xts						
4. Write definiti	tions,	descriptions, narrations, and essays on various topics							
5. Speak fluent	itly ar	nd accurately in formal and informal communicative con	texts	S					
UNIT-1		INTRODUCTION TO FUNDAMENTALS OF	6	HO	URS				
		COMMUNICATION							
Reading – New	vspap	per- sports/health; technical Brochures							
Writing – Profe	ession	nal emails; Formal letters - Requisition & Business letter	ſS						
Grammar – Wo	ord to	ormation, Parts of speech, Framing questions		ام مر م	A				
	Бупо					yms			
Reading - Biog	aranh		0	110	013				
Writing - Guide	ad wr	iting- Paragraph: Short Report on an event (field trip etc	•)						
Grammar – Ter	nses	: Subject-Verb Agreement: Prepositions	,.)						
Vocabulary – N	Vocabulary – Narrative vocabulary: Phrasal verbs								
UNIT-3 DESCRIPTION OF A PROCESS / PRODUCT 6 HOURS									
Reading – Gadget reviews: Advertisements									
Writing - Produ	ict de	escription, Process description: Instruction writing							
Grammar – Imperatives; Degrees of comparison									
Vocabulary –	Com	pound words; Homonyms, homophones; discourse m	arke	rs-	Conne	ective	s and		

Sequence	e words								
UNIT-4	CLASSIFICATION ND RECOMMENDATIONS	6 HOURS							
Reading – Writing – Grammar	 Newspaper articles; journal reports Note-making; Interpretation of charts; Recommendations Articles; Modal verbs 								
Vocabula	ary - Collocations; Fixed / Semi fixed expressions.								
UNIT-5	EXPRESSION	6 HOURS							
Reading Writing – Grammar Vocabula	Reading – Editorials; opinion blogs Writing – Reports – Accident & Survey; Business letters Grammar – Punctuation; Negations; Simple, Complex and Compound sentences Vocabulary - Cause & Effect Expressions; Content vs Function words								
	TOTAL HOURS.	30 100K3							
ТЕХТ ВО	OK(S):								
1.	Hewings, Martin Advanced Grammar In Use. New Delhi: CUP,2 Writers of Research Papers, 7 th Edition	2008 MLA Handbook for							
 English for Science & Technology Cambridge University Press, 2021. Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University. 									
REFERE	NCE BOOKS:								
1	Ian wood, Anne Williams with Anna Cowper, "Pass Cambridge Bledition, Cengage Learning, 2015.	EC Preliminary", 2 nd							
2	Technical Communication – Principles And Practices, Meenakshi Sharma, Oxford Univ. Press, 2016, New Delhi.	Raman & Sangeeta							
3	A Course Book On Technical English By Lakshminarayanan, Sci Pvt. Ltd.	tech Publications (India)							
4	Effective Communication Skill, Kulbhusan Kumar, RS Salaria, Kh	anna Publishing House.							
LIST OF	EXPERIMENTS :								
1. Listenir	ng to introductions of successful people								
2. Self-Int	roduction and introducing a friend								
3. Listenir	ng and filling out a form								
4. Narratii	ng a story using hints								
5. Listenir	5. Listening to telephone conversation								
6. Teleph	6. Telephonic Interview- Role play								
7. Listen	ing to podcasts, anecdotes/event narration								
8. Narrat	8. Narrating personal experiences/ events								
9. Listen	ing to celebrity interviews								
(Curriculum and Syllabus B.Tech - Agricultural Engineering R202	2 Page 21							

10. Conversation Skills- Politeness strategies
11. Listening to process descriptions
12. Describing a process
13. Listening to travelogues
14. Narrating travel experiences
15. Listening to educational videos
16. Group discussion
17. Listening to TED Talks
18. Mini Presentations
19. Listening to description of art work
20. Picture description
21. Listening to scientific lectures
22. Summarizing a lecture
23. Listening to definitions/ descriptions of objects
24. One minute speech - Describing an object
25. Listening to Tv shows
26. Anchoring a reality show
27. Listening to advertisements
28. Adzap
29. Listening to autobiography
30. Visume
TOTAL HOURS: 60 HOURS

Course Code	Course Title	L	Т	Ρ	J	С
22BST101		3	2	0	0	4
	BASIC MATHEMATICS FOR ENGINEERS	Sy v	/llab ersic	us on	v.	2.0
COURSE OBJECTIV	ES:					

After studying this course, you should be able to:

- 1. To develop the use of matrix algebra techniques that are needed by engineers for practical applications.
- 2. To acquaint the students with differential calculus.
- 3. To explain the student with functions of several variables.
- 4. To make the students understand various techniques of integration and its applications.
- 5. To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

COURSE OUTCOME:

After completion of this course, the students should be able to

- 1. Use the matrix algebra methods for solving practical problems.
- 2. Apply differential calculus tools in solving various application problems.
- 3. Able to use differential calculus ideas on several variable functions.
- 4. Apply different methods of integration in solving practical problems.
- 5. Apply multiple integral ideas in solving areas, volumes and other practical problems.

UNIT-1

Characteristic equation – Properties of Eigenvalues and Eigenvectors – Cayley - Hamilton theorem - Diagonalization of matrices by orthogonal transformation - Reduction of a quadratic form to canonical form by orthogonal transformation

UNIT-2 DIFFERENTIAL CALCULUS

Representation of functions - Limit of a function- Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Logarithmic differentiation - Maxima and Minima of functions of one variable.

UNIT-3 FUNCTIONS OF SEVERAL VARIABLES

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Taylor's series for functions of two variables – Maxima and minima of functions of two variables and Lagrange's method of undetermined multipliers.

UNIT-4 **INTEGRAL CALCULUS** 9+3 HOURS Definite and Indefinite integrals - Substitution rule - Integration by parts, Trigonometric integrals,

Trigonometric substitutions, Integration of rational functions by partial fraction

UNIT-5	WOLTFLE	INTEGRALS	9+3 HOUKS
Double integral	s – Change	of order of integration – Double integrals in polar of	coordinates – Area
enclosed by pla	ne curves – T	riple integrals – Volume of solids	
		TOTAL LECTURE AND TUTORIAL HOURS.	

TEXT BOOK(S):

Kreyszig.E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, 1. New Delhi, 2016.

Curriculum and Syllabus | B.Tech - Agricultural Engineering | R2022 | Page | 23

9+3 HOURS

9+3 HOURS

9+3 HOURS

MATRICES

2	Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, New Deini, 44th
	Edition, 2018.
	James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New
3.	Delhi, 2015. [For Units II & IV - Sections 1.1, 2.2, 2.3, 2.5, 2.7 (Tangents problems only),
	2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1 (Area problems only), 5.2, 5.3, 5.4 (excluding net change
	theorem), 5.5, 7.1 - 7.4 and 7.8].
REFERE	NCE BOOKS:
1.	Anton. H, Bivens. I and Davis. S, "Calculus", Wiley, 10th Edition, 2016
	Bali. N., Goyal. M. and Watkins. C., "Advanced Engineering Mathematics", Firewall Media
2.	(An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
<u> </u>	Jain. R.K. and Iyengar. S.R.K., "Advanced Engineering Mathematics", Narosa
3.	Publications, New Delhi, 5th Edition, 2016.
4	Narayanan. S. and Manicavachagom Pillai. T. K., "Calculus" Volume I and II, S.
4.	Viswanathan Publishers Pvt. Ltd., Chennai, 2009.
F	Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd,
э.	New Delhi, 2016.
6	Srimantha Pal and Bhunia. S.C, "Engineering Mathematics" Oxford University Press,
0.	2015.
7.	Thomas. G. B., Hass. J, and Weir. M.D, "Thomas Calculus", 14th Edition, Pearson India, 2018.

Course Code	Course Title	L	Т	Ρ	J	С	
22BST102	Engineering Physics	3	0	0	0	3	
Pre-requisite	NIL	Sy v	/llabi ersio	us n	v.	v. 2.0	

COURSE OBJECTIVES:

- 1. To make the students effectively achieve an understanding of mechanics.
- 2. To enable the students to gain knowledge of electromagnetic waves and its applications.
- 3. To introduce the basics of oscillations, optics and lasers.
- 4. Equipping the students to successfully understand the importance of quantum physics.
- 5. To motivate the students towards the applications of quantum mechanics.

COURSE OUTCOME:

After completion of this course, the students should be able to

CO1: Understand the importance of mechanics.

CO2: Express their knowledge in electromagnetic waves.

CO3: Demonstrate a strong foundational knowledge in oscillations, optics and lasers.

CO4: Understand the importance of quantum physics.

CO5: Comprehend and apply quantum mechanical principles towards the formation of energy bands

UNIT I	MECHANICS	9 hours		
Multi-particle dy	namics: Center of mass (CM) – CM of continuous bodies – motion of the	e CM – kinetic		
energy of the system of particles. Rotation of rigid bodies: Rotational kinematics - rotational kinetic				
energy and moment of inertia - MI of a diatomic molecule - theorems of MI -moment of inertia of				
continuous bod	ies torque - rotational dynamics of rigid bodies - conservation of angul	ar momentum		
– rotational ene	rgy state of a rigid diatomic molecule.			
UNITII	ELECTROMAGNETIC WAVES	9 hours		
The Maxwell's e	equations - wave equation; Plane electromagnetic waves in vacuum, Con	ditions on the		
wave field - pro	perties of electromagnetic waves: speed, amplitude, phase, orientation	and waves in		
matter - polariz	zation - Producing electromagnetic waves - Energy and momentum in	n EM waves:		
Intensity, wave	s from localized sources, momentum and radiation pressure - basic in	ntroduction to		
Satellite Comm	unication (qualitative treatment)			
UNIT III	OSCILLATIONS, OPTICS AND LASERS	9 hours		
Simple harmon	c motion - resonance –analogy between electrical and mechanical oscill	ating systems		
- waves on a s	tring - standing waves - traveling waves - Energy transfer of a wave	interference-		
Michelson inter	ferometer – Theory of laser – characteristics - Spontaneous and stimulat	ed emission -		
Einstein's coeff	icients - population inversion - Nd-YAG laser, CO2 laser, semiconductor	r laser –Basic		
applications of	asers in industry.			
UNIT IV	BASIC QUANTUM MECHANICS	9 hours		
Photons and lig	ht waves - Electrons and matter waves - Photoelectric effect - The Schro	odinger		
equation (Time	dependent and time independent forms) - interpretation of wave function	_–Free		
particle - particl	e in an infinite potential well: 1D,2D and 3D Boxes- Normalization and pr	obabilities –		
Bohr's correspo	ndence principle (concept only).			
UNIT V	APPLIED QUANTUM MECHANICS	9 hours		
The harmonic Tunnelling micr entanglement –	oscillator(qualitative)- Barrier penetration and quantum tunnelling oscope - Resonant diode – Principle of quantum superposition – concepts of quantum communication and quantum teleportation	(qualitative)- ot of quantum		
	Total Lecture hours:	45 hours		
Text Book(s)				
1. D.Kleppner and R.Kolenkow. An Introduction to Mechanics. McGraw Hill Education (Indian Edition), 2017.				
2. E.M.Purcell and D.J.Morin, Electricity and Magnetism, Cambridge Univ.Press, 2013.				
3. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw- Hill (Indian Edition), 2017.				
Reference Boo				

1.	R. Wolfson. Essential University Physics. Volume 1 & 2. Pearson Education (Indian Edition), 2009.
2.	Paul A. Tipler, Physic – Volume 1 & 2, CBS, (Indian Edition), 2004.
3.	K. Thyagarajan and A.Ghatak. Lasers: Fundamentals and Applications, Laxmi Publications, (Indian Edition), 2019.
4.	D.Halliday, R.Resnick and J.Walker. Principles of Physics, Wiley (Indian Edition), 2015.
5.	N.Garcia, A.Damask and S.Schwarz. Physics for Computer Science Students. Springer Verlag, 2012.

Course Code	Course Title	L	Τ	Ρ	J	С
22BST103	Engineering Chemistry	3	0	0	0	3
Pre-requisite	NIL	Sy ve	llab ersio	ous on		v. 2.0

Course Objectives:

1. To inculcate a sound understanding of water quality parameters and water treatment techniques.

2. To impart knowledge on the basic principles and preparatory methods of nanomaterials.

3. To introduce the different polymers and composites for engineering applications.

4. To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.

5. To familiarize the students with the operating principles, working processes and applications of storage devices and computational chemistry that are essential for chemistry.

Course Outcomes:

1. To infer the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.

2. To identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.

3. To analyse the properties of different polymers and distinguish the polymers which can be degraded and demonstrate their usefulness and composites for material selection requirements.

4. To recommend suitable fuels for engineering processes and applications.

5. To solve chemical problems by simulating chemical systems (molecular, biological, materials) in order to provide reliable, accurate and comprehensive information at an atomic level.

Unit-1	WATER AND ITS TREATMENT 9 hours			
Water: Source	es and impurities, Requirements of portable water, Desalination of brain	ackish water: Reverse		
Osmosis. Red	quirements of water for industrial use, Boiler troubles: Scale and slu	dge, Boiler corrosion,		
Caustic embri	Caustic embrittlement, Priming & foaming. Treatment of boiler feed water: Internal treatment (phosphate,			
colloidal, so	dium aluminate and Calgon conditioning) and External treatr	ment -lon exchange		
demineralization and zeolite process. Municipal water treatment: primary treatment and disinfection (UV,				
Ozonation, br	eak-point chlorination).			
Unit-2	NANOCHEMISTRY	9 hours		

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials: Definition, properties and uses of – nanoparticle, nanocluster, nanorod, nanowire and nanotube. Preparation of nanomaterials: sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, agriculture, energy, electronics and catalysis.

1 1		5
Unit-3	POLYMERS AND COMPOSITES	9 hours
Definition of h	is degree deble melymente. Cleasification of his degree deble	

Definition of biodegradable polymers- Classification of biodegradable

Polymers – Advantages, conducting polymers-polyaniline, polyacetylene, recycling of e-plastic waste (waste to wealth).

Composites: Introduction: Definition & Need for composites; Constitution: Matrix materials (Polymer, matrix, metal matrix and ceramic matrix) and Reinforcement (fibre, particulates, flakes and whiskers). Properties and applications of Metal matrix composites (MMC), Ceramic matrix composites and Polymer matrix composites. Hybrid composites - definition and examples.

Unit-4	FUELS AND COMBUSTION	9 hours
--------	----------------------	---------

Fuels: Introduction: Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel, Knocking - octane number, diesel oil-cetane number; Power alcohol and biodiesel.

Combustion of fuels: Calorific value - higher and lower calorific values, Flue gas analysis - ORSAT Method. CO2 emission and carbon footprint.

Unit-5	COMPUTATIONAL CHEMISTRY AND STORAGE DEVICES	9 hours

Computational chemistry-molecular dynamics and chemical reactivity. Cheminformatics and Green IOT in biomedical applications, Artificial intelligence and machine learning methods to predict physicochemical properties.

Batteries: a brief introduction to electrochemical cell (Daniel cell), Types of batteries, Primary battery - dry cell, Secondary battery - lead acid battery and lithium-ion- battery; battery used in Electric vehicles; Fuel cells: H2-O2 fuel cell, microbial fuel cell;

Supercapacitors: Storage principle, types and examples.

Total Lecture hours:45 hours

Text Book(s)						
1.	P. C. Jain and Monica Jain, "Engineering Chemistry", 17th Edition, Dhanpat Rai Publishing Company (P) Ltd. New Delhi, 2018.					
2.	Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2008.					
3.	S.S. Dara, "A Text book of Engineering Chemistry", S. Chand Publishing, 12th Edition.					
Refere	nce Books					
1.	B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath and James Murday, "Textbook of nanoscience and nanotechnology", Universities Press-IIM Series in Metallurgy and Materials Science, 2018.					
2.	O.G. Palanna, "Engineering Chemistry" McGraw Hill Education (India) Private Limited, 2nd Edition, 2017.					

3.	Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014.
4.	ShikhaAgarwal, "Engineering Chemistry-Fundamentals and Applications", Cambridge University Press, Delhi, Second Edition, 2019.
5.	O.V. Roussak and H.D. Gesser, Applied Chemistry-A Text Book for Engineers and Technologists, Springer Science Business Media, New York, 2nd Edition, 2013.

Course Code	Course Title	L	т	Р	J	С
22EST101	PROBLEM SOLVING AND PYTHON PROGRAMMING	3	0	0	0	3
Pre-requisite		Syllat versi	ous on		v .	1.0

COURSE OBJECTIVES: After studying this course, you should be able to:

- 1. To understand the basics of algorithmic problem solving.
- 2. To learn to solve problems using Python conditionals and loops.
- 3. To define Python functions and use function calls to solve problems.
- 4. To use Python data structures lists, tuples, dictionaries to represent complex data.
- 5. To do input/output with files in Python.

COURSE OUTCOME:

After completion of this course, the students should be able to

- Develop algorithmic solutions to simple computational problems.
- Develop and execute simple Python programs.
- Write simple Python programs using conditionals and loops for solving problems.
- Decompose a Python program into functions.
- Represent compound data using Python lists, tuples, dictionaries etc.
- Read and write data from/to files in Python programs.

UNIT-1

COMPUTATIONAL THINKING AND PROBLEM SOLVING 9 HOURS

Fundamentals of Computing – Identification of Computational Problems -Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT-2 DATA TYPES, EXPRESSIONS, STATEMENTS 9 HOURS

Python interpreter and interactive mode, debugging; values and types: int, float, boolean, string and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT-3 CONTROL FLOW, FUNCTIONS, STRINGS 9 H

9 HOURS

Conditionals:Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elifelse);Iteration: state, while, for, break, continue, pass; Fruitful functions: return values,parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT-4

LISTS, TUPLES, DICTIONARIES

9 HOURS

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: simple sorting, histogram, Students marks statement, Retail bill preparation.

UNIT-5

FILES, MODULES, PACKAGES

9 HOURS

Files and exceptions: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file, Voter's age validation, Marks range validation (0-100).

TOTAL LECTURE HOURS: 4	45 HOURS
------------------------	----------

TEXT BOOK(S):

1.	Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd Edition, O'Reilly Publishers, 2016.					
2.	Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and					
	Programming", 1st Edition, BCS Learning & Development Limited, 2017					
REFERENCE BOOKS:						
	Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st					
1.	Edition.2021.					
	G Venkatesh and Madhavan Mukund "Computational Thinking. A Primer for Programmers and					
2.	Data Scientists", 1st Edition, Notion Press, 2021.					
	John V Guttag, "Introduction to Computation and Programming Using Python: With					
3.	Applications to Computational Modeling and Understanding Data", Third Edition, MIT					
	Press, 2021					
	Eric Matthes, "Python Crash Course, A Hands - on Project Based Introduction to					
4.	Programming", 2nd Edition, No Starch Press, 2019.					

5.

Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc-Graw Hill, 2018.

Course	odo.	Course Title	1	т	D	1	
22HSM1	01		 1	0	г 0	0	1
Pre-requ	isite		Sy ve	llab ersic	us on	v .	1.0
Unit-1		LANGUAGE AND LITERATURE			03 I	nour	S
Language Fa Literature in - Manageme - Bakthi Lite literature in T	milies in Tamil – S nt Princip rature Az Tamil - Co	India - Dravidian Languages – Tamil as a Classical Langua ecular Nature of Sangam Literature – Distributive Justice in les in Thirukural - Tamil Epics and Impact of Buddhism & Ja shwars and Nayanmars - Forms of minor Poetry - Deve entribution of Bharathiyar and Bharathidhasan.	ige - n Sai ainisi elopn	Cla ngai m in nent	ssica m Li Tan : of	al terati nil La Mode	ure and ern
Unit-2	ŀ	IERITAGE - ROCK ART PAINTINGS TO MODERN ART -	-		03 I	nour	S
		SCULPTURE					
Hero stone to - Massive musical instr Social and E	modern Terracott uments - conomic	sculpture - Bronze icons - Tribes and their handicrafts - Art of a sculptures, Village deities, Thiruvalluvar Statue at Kany Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Life of Tamils.	of ter vakur Role	nple nari e of	e car , Ma Ten	mak aking nples	ing of in
Unit-3		FOLK AND MARTIAL ARTS			03 hours		
Therukoothu Valari, Tiger	Karagat dance - S	tam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leather pup Sports and Games of Tamils.	petr	y, S	ilam	batta	ım,
Unit-4		THINAI CONCEPT OF TAMILS			03 I	nour	S
Flora and Fa Aram Conce Sangam Age	una of Ta pt of Tan - Export	mils & Aham and Puram Concept from Tholkappiyam and hils - Education and Literacy during Sangam Age - Ancient and Import during Sangam Age - Overseas Conquest of C	San t Citi hola:	gam es a s.	Lite	ratui Ports	e - of
Unit-5 CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE				-	03 I	nour	S
Contribution parts of India – Inscriptions	of Tamils – Self-Ro & & Manu	to Indian Freedom Struggle - The Cultural Influence of Taespect Movement - Role of Siddha Medicine in Indigenous S scripts – Print History of Tamil Books	amils Syste	s ov ems	er th of N	ie otl ledic	ner ine
		Total Lecture	hou	rs:	15 ł	nours	3
TEXT BOOK	(S)						
1. T	The Contr nternation	ibutions of the Tamils to Indian Culture (Dr. M. Valarmathi) nal Institute of Tamil Studies.)	(Pul	olish	ned k	by:	
2. ł	Keeladi -	Sangam City Civilization on the banks of river Vaigai' (Join	tly P	ublis	shed	by:	
Curr	iculum ar	nd Syllabus B.Tech - Agricultural Engineering R2022 Pa	age	30			

•

	Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation,
3.	Tamilaga Varalaru, Makalum Panpadum- Dr. K.K. Pillai
4.	Kanini Tamil- Munaivar L. Sundaram
REFEREN	CE BOOKS
1.	Social Life of Tamils (Dr. K. K. Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
2.	Social Life of the Tamils - The Classical Period (Dr. S. Singaravelu) (Published by: International Institute of Tamil Studies.
3.	Historical Heritage of the Tamils (Dr. S. V. Subatamanian, Dr. K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
4.	Studies in the History of India with Special Reference to Tamil Nadu (Dr. K.K. Pillay) (Published by: The Author)
5.	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

Course Code	Course Title	L	Т	Р	J	С
22EET102	Skill Development Training-I (Student READY)	1	0	2	0	2
Pre-requisite		Syllat versi	ous on		v. ′	1.0

COURSE OBJECTIVES: After studying this course, you should be able to:

- 1. Understand the characteristics of 'engineering' and the quality engineers have played in shaping engineering up to the present and into the future
- 2. Understand a range of principles in science, mathematics, and engineering in order to make wellfounded decisions as part of a design process
- 3. To be proficient in using MS WORD to create quality technical documents, by using standard templates, widely acceptable styles and formats, variety of features to enhance the present ability and overall utility value of content
- 4. To be proficient in using MS EXCEL for all data manipulation tasks including the common statistical, logical, mathematical etc., operations, conversion, analytics, search and explore, visualize, interlink, and utilizing many more critical features offered
- 5. To be able to create and share quality presentations by using the features of MS PowerPoint, including: organization of content, present ability, aesthetics, using media elements and enhance the overall quality of presentations.

COURSE OUTCOME:

- Understand the basic knowledge in evolution of engineering
- Understand the basic knowledge in Engineering approach
- Use the MS Word to create quality documents, by structuring and organizing content for their day to day technical and academic requirements
- Use MS EXCEL to perform data operations and analytics, record, retrieve data as per requirements and visualize data for ease of understanding
- Use MS PowerPoint to create high quality academic presentations by including common tables, charts, graphs, interlinking other elements, and using media objects.

UNIT-1 EVOLUTION OF ENGINEERING

Evolution of Engineering: Description of Engineering, Early stages of Engineering, Outline of Ancient Engineering, Case studies of historic engineers.

Introduction to Engineering Career: Engineering as a career and common qualities of employable engineers History of Engineering Domains Impact of engineering on society. Roles of Engineers and Career Paths.

UNIT-2 ENGINEERING APPROACH

MS EXCEL

UNIT-4

Introduction, problem statement: Detailing Customer Requirements, Setting Objectives, Identifying Constraints, Establishing Functions, generating solution Alternatives and Choosing a solution.Steps in problem-solving: Problem Solving Techniques, Six Thinking Hats, Mind Mapping, Forced Connections. Analytical Thinking, Numeric, symbolic, and graphic reasoning. seven steps in solving engineering problems, reverse engineering, forward engineering, concurrent engineering, and Value Engineering.

UNIT-3	MS WORD	6 HOURS

Create and format a document, Working with tables, Working with Bullets and Lists, Working with styles, shapes, smart art, charts Inserting objects, charts and importing objects from other office tools, Creating and Using document templates, Inserting equations, symbols and special characters, Working with Table of contents and References, citations Insert and review comments, Create bookmarks, hyperlinks, endnotes footnote, Viewing document in different modes, Working with document protection and security, Inspect document for accessibility.

Create worksheets, insert and format data, Work with different types of data: text, currency, date, numeric etc. Split, validate, consolidate, Convert data Sort and filter data Perform calculations and use functions: (Statistical, Logical, Mathematical, date, Time etc.,) Work with Lookup and reference formulae, Create and Work with different types of charts, Use pivot tables to summarize and analyse data, Perform data analysis using own formulae and functions, Combine data from multiple worksheets using own formulae and built-in functions to generate results, Export data and sheets to other file formats, Working with macros, Protecting data and Securing the workbook

Curriculum and Syllabus | B.Tech - Agricultural Engineering | R2022 | Page | 32

6 HOURS

6 HOURS

6 HOURS

UNIT-5	MS POWERPOINT	6 HOURS							
Hours Select slide templates, layout and themes, Formatting slide content and using bullets and numbering, Insert and format images, smart art, tables, charts Using Slide master, notes and handout master, Working with animation and transitions, Organize and Group slides Import or create and use media objects: audio, video, animation, Perform slideshow recording and Record narration and create presentable videos.									
	TOTAL LECTURE HOURS:	30 HOURS							
TEXT BOO	TEXT BOOK(S):								
1.	Remesh S., Vishnu R. G., Life Skills for Engineers, Ridhima Publicati	ons, 1 stEdition,2016.							
2.	Barun K. Mitra, Personality Development & Soft Skills, Oxford Publ 2017.	ishers, Third impression,							
3.	Dorothy House, Microsoft Word, Excel, and PowerPoint: Just for Begin 2015	nners, Import, 29 January							

REFERENCE BOOKS:

1. Paul H. Wright, Introduction to Engineering, School of Civil and Environmental Engineering, 3rd Edition, John Wiley & Sons, Inc,

Course Code	Course Title	L	Т	Ρ	J	С
22ESP101	PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY	0	0	4	0	2
Pre-requisite		Sy	/llab ersio	ous on		v. 1.0

COURSE OBJECTIVES:

- 1. To understand the problem solving approaches.
- 2. To learn the basic programming constructs in Python.
- 3. To practice various computing strategies for Python-based solutions to real world problems.
- 4. To use Python data structures lists, tuples, dictionaries.
- 5. To do input/output with files in Python.

COURSE OUTCOME:

On completion of the course, students will be able to:

- CO1: Develop algorithmic solutions to simple computational problems
- CO2: Develop and execute simple Python programs.
- CO3: Implement programs in Python using conditionals and loops for solving problems.
- CO4: Deploy functions to decompose a Python program.
- CO5: Process compound data using Python data structures.
- CO6: Utilize Python packages in developing software applications.

LIST OF EXPERIMENTS:

Note: The examples suggested in each experiment are only indicative. The lab instructor is expected to design other problems on similar lines. The Examination shall not be restricted to the sample experiments listed here.

- 1. Identification and solving of simple real life or scientific or technical problems, and developing flow charts for the same. (Electricity Billing, Retail shop billing, Sin series, weight of a motorbike, Weight of a steel bar, compute Electrical Current in Three Phase AC Circuit, etc.)
- 2. Python programming using simple statements and expressions (exchange the values of two variables, circulate the values of n variables, distance between two points).
- 3. Scientific problems using Conditionals and Iterative loops. (Number series, Number Patterns, pyramid pattern) Implementing real-time/technical applications using Lists, Tuples. (Items present in a library/Components of a car/ Materials required for construction of a building operations of list & tuples)
- 5. Implementing real-time/technical applications using Sets, Dictionaries. (Language, components of an automobile, Elements of a civil structure, etc.- operations of Sets & Dictionaries)
- 6. Implementing programs using Functions. (Factorial, largest number in a list, area of shape)
- 7. Implementing programs using Strings. (reverse, palindrome, character count, replacing characters)
- 8. Implementing programs using written modules and Python Standard Libraries (pandas, numpy. Matplotlib, scipy)
- 9. Implementing real-time/technical applications using File handling. (copy from one file to another, word count, longest word)
- 10. Implementing real-time/technical applications using Exception handling. (divide by zero error, voter's age validity, student mark range validation)
- 11. Exploring Pygame tool.
- 12. Developing a game activity

using Pygame like bouncing ball, car race etc.

TOTAL LECTURE HOURS: 30 HOURS

Course Code	Course Title	L	Т	Р	J	С
22BSP101	PHYSICS CHEMISTRY LABORATORY (CHEMISTRY)	0	0	4	0	2
Pre-requisite	NIL	Syllabus version		v.	2.0	

Course Objectives:

- 1. To impart practical skills in the estimation of water quality parameters by volumetry and gravimetry.
- 2. To familiarize the students with the estimation of impurities in aqueous solutions through electro-

analytical techniques such as pH metre, potentiometry and conductometry.

3. To demonstrate the analysis of metals by UV-Visible spectroscopy.

Course Outcome:

- 1. To independently estimate the water quality parameters, such as acidity, alkalinity, hardness, DO, TDS, chloride and copper contents by appropriate wet chemical analyses.
- 2. To quantitatively analyze the impurities in aqueous solution by electroanalytical techniques.
- 3. To determine the amount of metal ions in aqueous samples by spectroscopic techniques.

LIST OF EXPERIMENTS: ANY SEVEN

- 1. Preparation of Na₂CO₃ as a primary standard and estimation of acidity of a water sample using the primary standard
- 2. Determination of types and amount of alkalinity in water sample.
- 3. Determination of total, temporary & permanent hardness of water by EDTA method.
- 4. Determination of DO content of water sample by Winkler's method.
- 5. Determination of chloride content of water sample by Argentometric method.
- 6. Estimation of TDS of a water sample by gravimetry.
- 7. Determination of strength of given hydrochloric acid using pH meter.
- 8. Determination of strength of acids in a mixture of acids using conductivity meter.
- 9. Conductometric titration of barium chloride against sodium sulphate (precipitation titration)
- 10. Estimation of iron content of the given solution using potentiometer.
- 11. Estimation of iron content of the water sample using spectrophotometer (1,10-

Phenanthroline / thiocyanate method).

Total Laboratory hours: 30hours

Course Code	Course Title	L	Т	Ρ	J	C	
22BSP101	PHYSICS CHEMISTRY LABORATORY (PHYSICS)	0	0	4	0	2	
Pre-requisite	NIL	Syllabus version				v. 2.0	

Course Objectives:

- 1. To learn the proper use of various kinds of physics laboratory equipment.
- 2. To learn how data can be collected, presented and interpreted in a clear and concise manner.
- 3. To learn problem solving skills related to physics principles and interpretation of experimental data.
- 4. To determine error in experimental measurements and techniques used to minimize such error.
- 5. To make the student an active participant in each part of all lab exercises

Course Outcome:

- 1. Understand the functioning of various physics laboratory equipment.
- 2. Use graphical models to analyse laboratory data.
- 3. Use mathematical models as a medium for quantitative reasoning and describing physical reality.
- 4. Access, process and analyse scientific information.
- 5. Solve problems individually and collaboratively..

LIST OF EXPERIMENTS(Any Seven Experiments)

- 1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects.
- 2. Simple harmonic oscillations of cantilever.
- 3. non-uniform bending Determination of Young's modulus
- 4. Uniform bending Determination of Young's modulus
- 5. Laser- Determination of the wavelength of the laser using grating
- 6. Air wedge Determination of thickness of a thin sheet/wire
- 7. a) Optical fibre -Determination of Numerical Aperture and acceptance angleb) Compact disc- Determination of width of the groove using laser.
- 8. Acoustic grating- Determination of velocity of ultrasonic waves in liquids.
- 9. Ultrasonic interferometer determination of the velocity of sound and compressibility of liquids
- 10. Post office box -Determination of Band gap of a semiconductor.
- 11. Photoelectric effect
- 12. Michelson Interferometer.
- 13. Melde's string experiment
- 14. Experiment with lattice dynamics kit.

Total Laboratory hours: 30hours

Course Code L Т Ρ С Course Title J 2 0 0 0 1 22EEP101 PRODUCT TINKERING LABORATORY Syllabus v. 2.0 version

COURSE OBJECTIVES:

1. Hands on practical training, maintenance and troubleshooting on mechanical and electrical appliances in day-to-day life.

- 2. Analyse single phase and three phase residential building wiring (Energy meter, fuse, earthing)
- 3. Understand the internal structure and layout of the computer system.
- 4. Learn to diagnose minor problems with the computer functioning.
- 5. Know the proper usage and threats of the world wide web.

COURSE OUTCOME:
1. Students will able to understand domestic wiring procedures practically.

2. Students are capable of assembling a personal computer, and can perform installation of system software like MS Windows and required device drivers.

3. Students can detect and perform minor hardware and software level troubleshooting.

4. Capacity to work on Internet & World Wide Web and make effective usage of the internet for academics.

LIST OF EXPERIMENTS:

1. MECHANICAL EQUIPMENT STUDY

(a) Hand drilling machine, Screw Jack and centrifugal pump

(b) Two wheeler, Refrigeration and Air Conditioning system.

2. ELECTRICAL EQUIPMENT STUDY

Light fittings, LED, Stabilizer, UPS, Iron box, calling bell, Fan regulator

3. ELECTRONIC EQUIPMENT STUDY

a) Study the elements of a smart phone.

- b) Assembly and dismantle of LED TV.
- c) Assembly and dismantle of computer/ laptop

4. COMPUTER PERIPHERALS STUDY

PC HARDWARE Identification of the peripherals of a computer, components in a CPU and its functions. Block diagram of the CPU along with the configuration of each peripheral. Functions of Motherboard. Assembling and Disassembling of PC. System Software and application software installation.

5. BIOMEDICAL EQUIPMENT

- a) Assembly and dismantle of Electrocardiogram (ECG)
- b) Assembly and dismantle of ventilator.
- c) Assembly and dismantle of Doppler Ultra sound Scanner.

TROUBLESHOOTING

Hardware Troubleshooting: Students are to be given a PC which does not boot due to proper assembly or defective peripherals and the students should be taught to identify and correct the problem. *Software Troubleshooting*: Students have to be given a malfunctioning CPU due to system software problems. They should identify the problem and fix it to get the computer back to working condition. *Internet:* Web Browsers, Access of websites, Surfing the Web, Search Engines, Customization of web browsers, proxy settings, bookmarks, search toolbars, pop-up blockers. Antivirus downloads, Protection from various threats.

TOTAL LECTURE HOURS: 30 HOURS

Course Code	Course Title	L	т	Ρ	J	С
		3	0	2	0	4
22LET201 FUNC	FUNCTIONAL ENGLISH	Syllabus			v 1 1	
		vers	rsi	on	v	
COURSE C	BJECTIVES:					

The course enables the learner to:

- 1. Gain confidence to respond in English in both academic and professional contexts
- 2. Improve presentation skills to make effective presentations
- 3. Foster the ability to write effectively in all contexts
- 4. Strengthen the skills related to teamwork and leadership roles in society as well as in the workplace

COURSE OUTCOME: After the completion of this course, the students should be able to 1. Communicate fluently in professional situations 2. Express flexibility and appropriacy in Technical Events 3. Demonstrate complex forms and sentence structures with adequate vocabulary 4. Report events and the processes of technological & Industrial firms. 5. Present effective Profile in the context of job search UNIT-1 COMMUNICATIVE COMPETENCE

COMMUNICATIVE COMPETENCE Speaking: Interactive skills- Initiation & turn taking; relevance to the topic, puzzles & riddles Reading – Skimming, Scanning, Churning & Assimilation Writing – Paragraphs; Free writing & opinion paragraphs **Grammar** – Order of Adjectives, Primary Auxiliary Verbs Vocabulary – Phonetics – sounds and symbols; Vocabulary used in letters and emails UNIT-2 SITUATIONAL CONVERSATIONS 9 HOURS **Speaking** – Practicing fluency- cohesion, coherence, and speed of delivery **Reading** – Reading social media messages Writing - Checklist; Letter to the editor Grammar – Infinitives, Gerunds and Participles, Interrogative and Reflexive Pronoun **Vocabulary** – Verbal Analogies, Same words used as different parts of speech Unit-3 **REPORT ON TECHNICAL EVENTS** 9 hours Speaking - Mock TV news Reading/ anchoring Reading – Motivational essays on famous Engineers and Technologists Writing – Dialogue writing; Minutes of Meeting **Grammar** – Reported Speech, Modal Verbs Vocabulary – Technical Vocabulary, Jargon **DEVELOPING DISCUSSION SKILLS** Unit-4 9 hours **Speaking** – Giving short talks on technical topics **Reading - Descriptive passages – magazines/ articles** Writing – Recommendations; Job application **Grammar** – If conditional sentences, Articles **Vocabulary** - Purpose statements Unit-5 **PRESENTATION SKILLS** 9 hours

Speaking – Presentations using visual aids-Visume using appropriate body language and gestures; stating and asking for opinions and clarifications **Reading** – Predicting the content, speed reading techniques Writing - Precis Writing, Profile Writing Grammar – Mixed Tenses, Embedded Clause **Vocabulary** – Error Spotting, Sentence Completion TOTAL LECTURE HOURS: 45 HOURS List of Experiments : 1. Initiation and turn taking 2. Writing opinion paragraph 3. Situational conversations 4. Writing Checklists 5. Mock TV news reading 6. Writing the project proposal or Project report 7. Short talk on technical topics 8. Writing recommendations 9. PPT Presentation 10. Profile writing

TOTAL PRACTICAL HOURS: 30 HOURS

Text Book(s)

1	English for Engineers & Technologists (2020 edition) Orient Blackswan Private Ltd.			
1.	Department of English, Anna University			
2	Functional English for Communication (2022 edition) Ujjwala Kakarla, Guru Nanak Institutions			
۷.	Technical Campus (Autonomous), Hyderabad.			
Reference Books				
	Raman Meenakshi Sharma Sangeeta (2019) Professional English Oxford university press			
1.	Raman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford university press.			
1.	Raman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford university press. New Delhi.			
1.	Raman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford university press. New Delhi. Hewings, Martin. Advanced Grammar In Use. New Delhi: CUP,2008			
1. 2.	Raman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford university press. New Delhi. Hewings, Martin. Advanced Grammar In Use. New Delhi: CUP,2008 MLA Handbook for Writers of Research Papers, 7th Edition			
1. 2. 3.	 Raman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford university press. New Delhi. Hewings, Martin. Advanced Grammar In Use. New Delhi: CUP,2008 MLA Handbook for Writers of Research Papers, 7th Edition Klaus Bruhn Jensen. A handbook of Media and Communication Research. Routledge, 2003 			

Course Code	Course Title	L	Т	Ρ	J	С
22LET202	FRENCH LANGUAGE LEVEL 1	2	0	4	0	6
Pre-requisite		Syllabus version			v. 1.0	

- 1. To acquire an understanding of basic French language parts of speech
- 2. To facilitate learner's ability to learn the French language grammar.
- 3. To nurture learner's ability to understand the sentence structure
- 4. To foster technical writing skills through tenses and numbers
- 5. To comprehend various lectures and talks

PARTS OF SPEECH

Course Outcome:

Unit-1

Unit-3

Unit-4

1.

- 1. Read and write technical basic French language parts of speech
- 2. Speak appropriately learner's ability to learn the French language grammar.
- 3. Listen and comprehend lectures learner's ability to understand the sentence structure
- 4. Write correctly, clearly and concisely technical writing skills through tenses and numbers
- 5. Prepare self-introduction comprehend various lectures and talks

12 hours

1. inviter et répondre à une invitation, Pronoms sujets 2. L'article définis, l'article indéfinis 3. Conjugation : présent, adjectifs possessifs 4. interrogation, décrire les personnes 5. La vie de quatre parisiens de professions différentes

Unit-2 ELEMENTS OF GRAMMAR: 12 hours

- 1. Exprimer l'ordre et l'obligation demander et commander 51
- 2. l'adjectif possessifs, l'article partitif, l'article démonstratif, négation ne
- 3. pas, l'article contracté 4. verbe pronominaux 5. prepositions

SENTENCE STRUCTURE:

12 hours

12 hours

- 1. Raconter et reporter-donner son avis
- 2. Futur simple, pronom complètement d'objet direct, passé composé
- 3. plusieurs région de France, imparfait, pronom y/en, imparfait

TENSES AND NUMBERS

1. Demander l'autorisation-passé récent, futur proche

2. La vie administrative et régionale, Pluriel des noms, moyens de transport

Unit-5	DISCOURSE	12 hours
1. le discours	s rapporté, décrire un lieu, exprimer ses préférences 2. décrire la carriè	ere, discuter
d"système éd	ucation de France 3. parler de la technologie de l"information	
	Total Lecture hours:	45 hours
Text Book(s)		

Christine Andant étal "À propos (livre de l'élève", LANGER., NEW DELHI,2012

2.	Myrna Bell Rochester "Easy French Step By Step", MCGraw Hill Companies., USA, 2008							
Reference	Reference Books							
1.	Michael D. Oates "Entre Amis: An Interactive Approach", 5 th Edition, Houghton Mifflin., 2005							
2.	Bette Hirsch, Chantal Thompson "Moments Literaries : An Anthology for intermediate French"							
3.	Simone Renaud, Dominique van Hooff "En bonne forme							

Course Code	Course Title	L	Т	Ρ	J	С
22LET203	GERMAN- LEVEL A1.1	2	0	4	0	4
Pre-requisite		Sy ve	llat ersi	ous on		v. 1.0

- 1. To acquire an understanding of basic German language parts of speech
- 2. To facilitate learner's ability to learn the German language grammar.
- 3. To nurture learner's ability to understand the sentence structure
- 4. To foster technical writing skills through tenses and numbers
- 5. To comprehend various lectures and talks

Course Outcome:

- 1. Read and write technical basic German language parts of speech
- 2. Speak appropriately learner's ability to learn the German language grammar.
- 3. Listen and comprehend lectures learner's ability to understand the sentence structure
- 4. Write correctly, clearly and concisely technical writing skills through tenses and numbers
- 5. Prepare self-introduction comprehend various lectures and talks

Unit-1	nit-1 GUTEN TAG! 10 ours						
1.	To g	reet, learn numbers till 20, practice telephone numbers & e mail ad	dress, learn alphabet,				
speak about countries & languages							
2. Vocabulary: related to the topic							
3.	3. Gi	ammar: W – Questions, Verbs & Personal pronouns I					
Unit-2		FREUNDE, KOLLEGEN UND ICH	10 ours				
1.	To spe	eak about hobbies, jobs, learn numbers from 20; build dialogues and fi	ame simple questions				
	& ansv	vers					
2.	2. Vocabulary: related to the topic						
3. Grammar: Articles, Verbs & Personal pronouns II, sein & haben verbs, ja/nein Frage, singular/plural							
Unit-3		IN DER STADT	12 hours				

1.	To kno	ow places, buildings, question, know transport systems, understand int	ernational words; build
	dialog	ues and write short sentences	
2.	Vocab	ulary: related to the topic	
3.	Gram	nar: Definite & indefinite articles, Negotiation, Imperative with Sien ver	bs
Unit-4		GUTEN APPETIT!	13 hours
1.	To sp	eak about food, shop, converse; Vocabulary: related to the topic; bui	Id dialogues and write
	short s	sentences	
2.	Gram	nar: Sentence position, Accusative, Accusative with verbs, personal pro	onouns & prepositions,
	Past te	ense of haben & sein verbs	
Unit-5		TAG FŸR TAG/ZEIT MIT FREUNDEN	15 hours
1.	To lea	arn time related expressions, speak about family, about birthdays	, understand & write
	invitati	ons, converse in the restaurant; ask excuse, fix appointments on phor	ne
2.	Vocab	ulary: related to the topic	
3.	Gram	nar: Time related prepositions, Possessive articles, Modalverbs	
		Total Lecture hours:	60 hours
Text B	look(s)		L
1.	D	engler Stefanie "Netzwerk A1.1", Klett-Langenscheidt Gmbh., Münche	n,2013
2.	Sa	andra Evans, Angela Pude "Menschen A1", Hueber Verlag., Germany	, 2012
Refere	ence B	poks	
1.	St	efanie Dengler "Netzwerk A1", Klett-Langenscheidt Gmbh., München,	2013
2.	H D	ermann Funk, Christina Kuhn "Studio d A1", Goyal Publishers & Distril elhi, 2009	outors Pvt. Ltd., New
3.	Re Ve	osa-Maria Dallapiazza "Tangram Aktuell 1 (Deutsch als Fremdsprache erlag., Munchen, 2004	e)", Max Hueber
4	С	nristiane Lemcke und Lutz Rohrmann ""Grammatik Intensivtrainer A 1	', Goyal Publishers &

Course Code	Course Title	L	Т	Ρ	J	С	
22LET204	BASIC JAPANESE	2	0	4	0	4	
Pre-requisite		Sy ve	llat ersi	ous on		v. 1.0	

- 1. To acquire an understanding of basic Japanese language parts of speech
- 2. To facilitate learner's ability to learn the Japanese language grammar.
- 3. To nurture learner's ability to understand the sentence structure
- 4. To foster technical writing skills through tenses and numbers
- 5. To comprehend various lectures and talks

Course Outcome: 1. Read and write technical basic Japanese language parts of speech 2. Speak appropriately learner's ability to learn the Japanese language grammar. 3. Listen and comprehend lectures learner's ability to understand the sentence structure 4. Write correctly, clearly and concisely technical writing skills through tenses and numbers 5. Prepare self-introduction comprehend various lectures and talks Unit-1 JAPANESE PEOPLE AND CULTURE 12 hours 1. Basic greetings and responses 2. Basic script-Method of writing hiragana and katakana –Combination sounds and simple words 3. Self-introductions: "Hajimemashite" -Demonstratives "Kore", "Sore", "Are"–Demonstrative "Kone", "Sono", "Ano" 12 hours 1. Rara (from) - made(until) - Particle "to (and)" 2. Time periods: Days of the week, months, time of day –Verbs (Present / future and pastense) 3. Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". 12 hours 1. Potential verbs (wakarimasu and dekimasu) – "Kara (~ because)" 2. Adverbs –Asking some one out over the phone-Verbs denoting presence 3. Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs- Pleato (te kudasai) 4. Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon s raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours				
1. Read and write technical basic Japanese language parts of speech 2. Speak appropriately learner's ability to learn the Japanese language grammar. 3. Listen and comprehend lectures learner's ability to understand the sentence structure 4. Write correctly, clearly and concisely technical writing skills through tenses and numbers 5. Prepare self-introduction comprehend various lectures and talks Unit-1 JAPANESE PEOPLE AND CULTURE 12 hours 1. Basic greetings and responses 2. Basic script-Method of writing hiragana and katakana –Combination sounds and simple words 3. Self-introductions: "Hajmemashite" -Demonstratives "Kore", "Sore", "Are"–Demonstrative "Kono", "Sono", "Ano" 12 hours 4. Possessive noun particle "no" –Japanese apartments: Greeting your neighbor 12 hours 1. Kara (from) ~ made(until) – Particle "to (and)" 12 hours 1. Kara (from) ~ made(until) – Particle "to and business hours- Destination particle "e". 12 hours 1. Kara (from) ~ made(until) – Particle "to (and)" 2. Adverbs –Asking some one out over the phone-Verbs denoting presence 3. Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs- Pleato (to kudasai) 4. Present continuous tenses (te imasu) – Shall !? (~ mashou ka) – Describing a natural phenomenon s raining) (12) 10 IFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparison –Likes and dislikes –Going to a trip- Need and desire	Course Outcome:			
2. Speak appropriately learner's ability to learn the Japanese language grammar. 3. Listen and comprehend lectures learner's ability to understand the sentence structure 4. Write correctly, clearly and concisely technical writing skills through tenses and numbers 5. Prepare self-introduction comprehend various lectures and talks Unit-1 JAPANESE PEOPLE AND CULTURE 12 hours 1. Basic greetings and responses 2. Basic script–Method of writing hiragana and katakana –Combination sounds and simple words 3. Self-introductions:"Hajimemashite" -Demonstratives "Kore", "Sore", "Are"–Demonstrative Kono", "Sono", "Ano" 4. Possesive noun particle "no" –Japanese apartments: Greeting your neighbor Unit-2 PATICLE "NI (AT)" FOR TIME 12 hours 1. kara (from) ~ made(until) – Particle "to (and)" 2. Time periods: Days of the week, months, time of day –Verbs (Present / future and pasttense) 3. Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". Unit-3 LIKES AND DISLIKES 12 hours 1. Adverbs –Asking some one out over the phone-Verbs denoting presence 3. Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs-Pleat to (te kudasai) 4. Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon s raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti fesu)- Going for a certain purpose (mi –ni ikinasu) 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hours 60 hours 60 hours 60 hours 60 hours 61 60 hours 62 7 64 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1. Read and write technical basic Japanese language parts of speech			
 Listen and comprehend lectures learner's ability to understand the sentence structure Write correctly, clearly and concisely technical writing skills through tenses and numbers Prepare self-introduction comprehend various lectures and talks Unit-1 JAPANESE PEOPLE AND CULTURE 12 hours Basic greetings and responses Basic greetings can dresponses Basic script-Method of writing hiragana and katakana –Combination sounds and simple words Self-introductions: "Hajimemashite" -Demonstratives "Kore", "Sore", "Are"–Demonstrative Kono", "Sono", "Ano" Possessive noun particle "no" –Japanese apartments: Greeting your neighbor Unit-2 PATICLE "NI (AT)" FOR TIME 12 hours I. kara (from) ~ made(until) – Particle "to (and)" Time periods: Days of the week, months, time of day –Verbs (Present / future and pasttense) Belephone enquiry: Asking for a phone no. And business hours- Destination particle "e". Unit-3 LIKES AND DISLIKES 12 hours Potential verbs (wakarimasu and dekimasu) – "Kara (~ because)" Adverbs –Asking some one out over the phone-Verbs denoting presence Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs- Pleato (te kudasai) Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon s raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti tesu)- Going for a certain purpose (mi –ni ikimasu) Choosing from a menu-Adjectives ("I" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hours Framing simple questions & answers Writing Short paragraphs & Dialogues A demonstration on usag	2. Speak appropriately learner's ability to learn the Japanese language gramma	ar.		
 Write correctly, clearly and concisely technical writing skills through tenses and numbers Prepare self-introduction comprehend various lectures and talks Unit-1 JAPANESE PEOPLE AND CULTURE 12 hours Basic greetings and responses Basic script-Method of writing hiragana and katakana –Combination sounds and simple words Self-introductions:"Hajimemashite" -Demonstratives "Kore", "Are"-Demonstrative Kono", "Sono", "Ano" Possessive noun particle "no" –Japanese apartments: Greeting your neighbor Unit-2 PATICLE "NI (AT)" FOR TIME 12 hours Atara (from) ~ made(until) – Particle "to (and)" Atara (from) ~ made(until) – Particle "to (and)" Time periods: Days of the week, months, time of day –Verbs (Present / future and pasttense) Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". Unit-3 LIKES AND DISLIKES 12 hours Adverbs (wakarimasu and dekimasu) – "Kara (~ because)" Adverbs –Asking some one out over the phone-Verbs denoting presence Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs- Pleato (te kudasai) Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon s raining) (12 Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti fesu)- Going for a certain purpose (mi –ni ikimasu) Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hours Framing simple questions & answers Writing Short paragraphs & Dialogues A demonstration on usage of chopsticks and Japanese tea party (12) Total Lecture hours: 60 hours <li< td=""><td>3. Listen and comprehend lectures learner's ability to understand the sentence</td><td>structure</td></li<>	3. Listen and comprehend lectures learner's ability to understand the sentence	structure		
5. Prepare self-introduction comprehend various lectures and talks Unit-1 JAPANESE PEOPLE AND CULTURE 12 hours 1. Basic greetings and responses 2. Basic scriptMethod of writing hiragana and katakana -Combination sounds and simple words 3. Self-introductions: "Hajimemashite" -Demonstratives "Kore", "Sore", "Are"Demonstrative Kono", "Sono", "Ano" 1. Possessive noun particle "no" -Japanese apartments: Greeting your neighbor Unit-2 PATICLE "NI (AT)" FOR TIME 12 hours 1. kara (from) ~ made(until) - Particle "to (and)" 2. Time periods: Days of the week, months, time of day -Verbs (Present / future and pasttense) 3. Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". 12 hours 1. Araa (from) ~ made(until) - Particle "to (and)" 2. Adverbs -Asking some one out over the phone-Verbs denoting presence 3. Introduction to Adjectives (na and ii type) -Verb groups - I, II and III - Exercises to group verbs- Pleato (te kudasai) 4. Present continuous tenses (te imasu) - Shall I? (~ mashou ka) - Describing a natural phenomenon straining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparison -Likes and dislikes -Going to a trip- Need and desire (ga hoshii) -Wanting to(Tabeti desu)- Going for a certain purpose (mi -ni ikimasu) 2. Choosing from a menu-Adjectives ("I" and "na" type) - Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hou	4. Write correctly, clearly and concisely technical writing skills through tenses a	nd numbers		
Unit-1 JAPANESE PEOPLE AND CULTURE 12 hours 1. Basic greetings and responses 2. Basic script-Method of writing hiragana and katakana -Combination sounds and simple words 3. Self-introductions:"Hajimemashite" -Demonstratives "Kore", "Sore", "Are"-Demonstrative "Kono", "Ano" 4. Possessive noun particle "no" -Japanese apartments: Greeting your neighbor Unit-2 PATICLE "NI (AT)" FOR TIME 12 hours 1. kara (from) ~ made(until) - Particle "to (and)" 2. Time periods: Days of the week, months, time of day -Verbs (Present / future and pasttense) 3. Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". Unit-3 LIKES AND DISLIKES 12 hours 1. Atara (from) - Made(until) - Particle "to (and)" 2. Time periods: Days of the week, months, time of day -Verbs (Present / future and pasttense) 3. Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". Unit-3 LIKES AND DISLIKES 12 hours 1. Potential verbs (wakarimasu and dekimasu) - "Kara (~ because)" 2. Adverbs -Asking some one out over the phone-Verbs denoting presence 3. Introduction to Adjectives (na and ii type) -Verb groups - I, II and III - Exercises to group verbs- Pleato (te (kadsai) 4. Present continuous tenses (te imasu) - Shall I? (~ mashou ka) - Describing a natural phenomenon s raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparis	5. Prepare self-introduction comprehend various lectures and talks			
1. Basic greetings and responses 2. Basic script-Method of writing hiragana and katakana -Combination sounds and simple words 3. Self-introductions:"Hajimemashite" -Demonstratives "Kore", "Sore", "Are"-Demonstrative "Koron", "Sono", "Ano" 4. Possessive noun particle "no" -Japanese apartments: Greeting your neighbor Unit-2 PATICLE "NI (AT)" FOR TIME 12 hours 1. kara (from) ~ made(until) - Particle "to (and)" 2. Time periods: Days of the week, months, time of day -Verbs (Present / future and pasttense) 3. Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". Unit-3 LIKES AND DISLIKES 12 hours 1. Potential verbs (wakarimasu and dekimasu) - "Kara (~ because)" 2. Adverbs -Asking some one out over the phone-Verbs denoting presence 3. 3. Introduction to Adjectives (na and ii type) -Verb groups - I, II and III - Exercises to group verbs- Pleado (te kudasai) 4. Present continuous tenses (te imasu) - Shall I? (~ mashou ka) - Describing a natural phenomenon s raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparison -Likes and dislikes -Going to a trip- Need and desire (ga hoshii) -Wanting to(Tabeti desu)- Going for a certain purpose (mi -ni ikimasu) 2. 2. Choosing from a menu-Adjectives ("I" and "na" type) - Adjectives (Positive and negative useage) 1. Unit-5 ROLE PLAYS IN JAPANESE <td>Unit-1 JAPANESE PEOPLE AND CULTURE</td> <td>12 hours</td>	Unit-1 JAPANESE PEOPLE AND CULTURE	12 hours		
2. Basic script–Method of writing hiragana and katakana –Combination sounds and simple words 3. Self-introductions:"Hajimemashite" -Demonstratives "Kore", "Sore", "Are"–Demonstrative 'Kono", "Ano" 4. Possessive noun particle "no" –Japanese apartments: Greeting your neighbor Unit-2 PATICLE "NI (AT)" FOR TIME 12 hours 1. kara (from) – made(until) – Particle "to (and)" 2. Time periods: Days of the week, months, time of day –Verbs (Present / future and pasttense) 3. Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". Unit-3 LIKES AND DISLIKES 12 hours 1. Potential verbs (wakarimasu and dekimasu) – "Kara (~ because)" 2. Adverbs –Asking some one out over the phone-Verbs denoting presence 3. Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs- Pleato (te kudasai) 4. Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon s raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti desu)- Going for a certain purpose (mi –ni ikimasu) 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hours 1. Framing simple questions & answers 2. Writing Short paragraphs & Dialogues 3. A demonstration on usage of chopsticks and Japanese tea party (12) Total Lecture hours: 60 hours Fext Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	1. Basic greetings and responses			
 B. Self-introductions: "Hajimemashite" -Demonstratives "Kore", "Sore", "Are"–Demonstrative Koro", "Sono", "Ano" 4. Possessive noun particle "no" –Japanese apartments: Greeting your neighbor Unit-2 PATICLE "NI (AT)" FOR TIME 12 hours 1. kara (from) ~ made(until) – Particle "to (and)" 2. Time periods: Days of the week, months, time of day –Verbs (Present / future and pasttense) 3. Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". Unit-3 LIKES AND DISLIKES 12 hours 3. Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". Unit-3 LIKES AND DISLIKES 12 hours 4. Portential verbs (wakarimasu and dekimasu) – "Kara (~ because)" 2. Adverbs –Asking some one out over the phone-Verbs denoting presence 3. Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs- Pleatolo (te kudasai) 4. Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon is raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti desu)- Going for a certain purpose (mi –ni kimasu) 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hours 1. Framing simple questions & answers 2. Writing Short paragraphs & Dialogues 3. A demonstration on usage of chopsticks and Japanese tea party (12) Total Lecture hours: 60 hours Fext Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43 	2. Basic script–Method of writing hiragana and katakana –Combination sounds and	d simple words		
Kono", "Sono", "Ano" 4. Possessive noun particle "no" –Japanese apartments: Greeting your neighbor Unit-2 PATICLE "NI (AT)" FOR TIME 12 hours 1. kara (from) ~ made(until) – Particle "to (and)" 2. Time periods: Days of the week, months, time of day –Verbs (Present / future and pasttense) 3. Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". Unit-3 LIKES AND DISLIKES 12 hours 1. Potential verbs (wakarimasu and dekimasu) – "Kara (~ because)" 2. Adverbs –Asking some one out over the phone-Verbs denoting presence 3. Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs- Pleatol (te kudasai) 4. Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon s raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti fesu)- Going for a certain purpose (mi –ni ikimasu) 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hours 1. Framing simple questions & answers 2. Writing Short paragraphs & Dialogues 3. A demonstration on usage of chopsticks and Japanese tea party (12) 60 hours Text Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized V	Self-introductions: "Hajimemashite" -Demonstratives "Kore", "Sore", "Are"–Demo	nstrative		
4. Possessive noun particle "no" -Japanese apartments: Greeting your neighbor Unit-2 PATICLE "NI (AT)" FOR TIME 12 hours 1. kara (from) ~ made(until) – Particle "to (and)" 2. Time periods: Days of the week, months, time of day –Verbs (Present / future and pasttense) 3. Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". 12 hours 1. Potential verbs (wakarimasu and dekimasu) – "Kara (~ because)" 12 hours 2. Adverbs –Asking some one out over the phone-Verbs denoting presence 3. Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs- Pleato (te kudasai) 4. Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon is raining) (12) 12 hours 1. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti desu)- Going for a certain purpose (mi –ni ikimasu) 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hours 1. Framing simple questions & answers 2. Writing Short paragraphs & Dialogues 3. A demonstration on usage of chopsticks and Japanese tea party (12) 60 hours Total Lecture hours: 60 hours Fext Book(s) 1. 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Sylla	'Kono","Sono","Ano"			
Unit-2 PATICLE "NI (AT)" FOR TIME 12 hours 1. kara (from) ~ made(until) – Particle "to (and)" 1. kara (from) ~ made(until) – Particle "to (and)" 2. Time periods: Days of the week, months, time of day –Verbs (Present / future and pasttense) 3. Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". Unit-3 LIKES AND DISLIKES 12 hours 1. Potential verbs (wakarimasu and dekimasu) – "Kara (~ because)" 2. Adverbs –Asking some one out over the phone-Verbs denoting presence 3. Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs- Pleato (te kudasai) 4. Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon s raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti desu)- Going for a certain purpose (mi –ni ikimasu) 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hours 1. Framing simple questions & answers 2. Writing Short paragraphs & Dialogues 3. A demonstration on usage of chopsticks and Japanese tea party (12) 60 hours Text Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Pa	4. Possessive noun particle "no" –Japanese apartments: Greeting your neighbor			
1. kara (from) ~ made(until) – Particle "to (and)" 2. Time periods: Days of the week, months, time of day –Verbs (Present / future and pasttense) 3. Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". Unit-3 LIKES AND DISLIKES 12 hours 1. Potential verbs (wakarimasu and dekimasu) – "Kara (~ because)" 2. Adverbs –Asking some one out over the phone-Verbs denoting presence 3. Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs- Pleato (te kudasai) 4. Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon s raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti desu)- Going for a certain purpose (mi –ni ikimasu) 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hours 1. Framing simple questions & answers 2. Writing Short paragraphs & Dialogues 60 hours 3. A demonstration on usage of chopsticks and Japanese tea party (12) 60 hours 10 hours Text Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	Unit-2 PATICLE "NI (AT)" FOR TIME	12 hours		
2. Time periods: Days of the week, months, time of day –Verbs (Present / future and pasttense) 3. Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". Unit-3 LIKES AND DISLIKES 12 hours 1. Potential verbs (wakarimasu and dekimasu) – "Kara (~ because)" 2. Adverbs –Asking some one out over the phone-Verbs denoting presence 3. Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs- Pleato (te kudasai) 4. 4. Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon is raining) (12) 12 hours 1. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti desu)- Going for a certain purpose (mi –ni ikimasu) 2. 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) 12 hours 1. Framing simple questions & answers 2. 2. Writing Short paragraphs & Dialogues 3. 3. A demonstration on usage of chopsticks and Japanese tea party (12) 60 hours Total Lecture hours: 60 hours 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	1. kara (from) ~ made(until) – Particle "to (and)"	•		
3. Telephone enquiry: Asking for a phone no. And business hours- Destination particle "e". Unit-3 LIKES AND DISLIKES 12 hours 1. Potential verbs (wakarimasu and dekimasu) – "Kara (~ because)" 2. Adverbs – Asking some one out over the phone-Verbs denoting presence 3. Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs- Pleated (te kudasai) 4. Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon is raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti desu)- Going for a certain purpose (mi –ni ikimasu) 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hours 1. Framing simple questions & answers 2. Writing Short paragraphs & Dialogues 3. A demonstration on usage of chopsticks and Japanese tea party (12) 60 hours Text Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	2. Time periods: Days of the week, months, time of day –Verbs (Present / future ar	nd pasttense)		
Unit-3 LIKES AND DISLIKES 12 hours 1. Potential verbs (wakarimasu and dekimasu) – "Kara (~ because)" 2. Adverbs – Asking some one out over the phone-Verbs denoting presence 3. Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs- Pleado (te kudasai) 4. Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon s raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti Jesu)- Going for a certain purpose (mi –ni ikimasu) 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hours 1. Framing simple questions & answers 2. Writing Short paragraphs & Dialogues 3. A demonstration on usage of chopsticks and Japanese tea party (12) Total Lecture hours: 60 hours Fext Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	Telephone enquiry: Asking for a phone no. And business hours- Destination par	ticle "e".		
	Unit-3 LIKES AND DISLIKES	12 hours		
 Adverbs –Asking some one out over the phone-Verbs denoting presence Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs- Pleado (te kudasai) Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon is raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours I. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti desu)- Going for a certain purpose (mi –ni ikimasu) Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hours I. Framing simple questions & answers Writing Short paragraphs & Dialogues A demonstration on usage of chopsticks and Japanese tea party (12) Total Lecture hours: 60 hours Fext Book(s) Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43 	I. Potential verbs (wakarimasu and dekimasu) – "Kara (~ because)"			
 B. Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises to group verbs- Pleado (te kudasai) Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon s raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours I. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti desu)- Going for a certain purpose (mi –ni ikimasu) 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hours I. Framing simple questions & answers Writing Short paragraphs & Dialogues A demonstration on usage of chopsticks and Japanese tea party (12) Total Lecture hours: 60 hours Fext Book(s) Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43 	2. Adverbs – Asking some one out over the phone-Verbs denoting presence			
do (te kudasai) 4. Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon s raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti desu)- Going for a certain purpose (mi –ni ikimasu) 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 1. Framing simple questions & answers 2. Writing Short paragraphs & Dialogues 3. A demonstration on usage of chopsticks and Japanese tea party (12) Total Lecture hours: 60 hours Fext Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	3. Introduction to Adjectives (na and ii type) -Verb groups – I, II and III – Exercises	to group verbs- Pleas		
 4. Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a natural phenomenon s raining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti desu)- Going for a certain purpose (mi –ni ikimasu) 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hours 1. Framing simple questions & answers 2. Writing Short paragraphs & Dialogues 3. A demonstration on usage of chopsticks and Japanese tea party (12) Total Lecture hours: 60 hours Fext Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43 	do (te kudasai)			
Image: Straining) (12) Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti desu)- Going for a certain purpose (mi –ni ikimasu) 2. 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) 2. Unit-5 ROLE PLAYS IN JAPANESE 12 hours 1. Framing simple questions & answers 2. Writing Short paragraphs & Dialogues 3. A demonstration on usage of chopsticks and Japanese tea party (12) 60 hours Total Lecture hours: 60 hours 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	4. Present continuous tenses (te imasu) – Shall I? (~ mashou ka) – Describing a r	atural phenomenon (
Unit-4 DIFFERENT USAGES OF ADJECTIVES 12 hours 1. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti desu)- Going for a certain purpose (mi –ni ikimasu) 2. Choosing for a certain purpose (mi –ni ikimasu) 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) 12 hours Unit-5 ROLE PLAYS IN JAPANESE 12 hours 1. Framing simple questions & answers 12 hours 12 hours 3. A demonstration on usage of chopsticks and Japanese tea party (12) 60 hours Total Lecture hours: 60 hours 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	s raining) (12)			
I. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –Wanting to(Tabeti desu)- Going for a certain purpose (mi –ni ikimasu) 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 1. Framing simple questions & answers 12 hours 3. A demonstration on usage of chopsticks and Japanese tea party (12) Total Lecture hours: 60 hours 60 hours Fext Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	Unit-4 DIFFERENT USAGES OF ADJECTIVES	12 hours		
desu)- Going for a certain purpose (mi –ni ikimasu) 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 1. Framing simple questions & answers 2. Writing Short paragraphs & Dialogues 3. A demonstration on usage of chopsticks and Japanese tea party (12) Total Lecture hours: 60 hours Fext Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	I. Comparison –Likes and dislikes –Going to a trip- Need and desire (ga hoshii) –V	Vanting to(Tabeti		
 2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and negative useage) Unit-5 ROLE PLAYS IN JAPANESE 12 hours I. Framing simple questions & answers 2. Writing Short paragraphs & Dialogues 3. A demonstration on usage of chopsticks and Japanese tea party (12) Total Lecture hours: 60 hours Fext Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43 	desu)- Going for a certain purpose (mi –ni ikimasu)			
Unit-5 ROLE PLAYS IN JAPANESE 12 hours 1. Framing simple questions & answers 2. Writing Short paragraphs & Dialogues 3. A demonstration on usage of chopsticks and Japanese tea party (12) 3. A demonstration on usage of chopsticks and Japanese tea party (12) Total Lecture hours: 60 hours Fext Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	2. Choosing from a menu-Adjectives ("i" and "na" type) – Adjectives (Positive and r	negative useage)		
Unit-5 ROLE PLAYS IN JAPANESE 12 hours 1. Framing simple questions & answers 2. Writing Short paragraphs & Dialogues 3. A demonstration on usage of chopsticks and Japanese tea party (12) Total Lecture hours: 60 hours Fext Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43				
 Framing simple questions & answers Writing Short paragraphs & Dialogues A demonstration on usage of chopsticks and Japanese tea party (12) Total Lecture hours: 60 hours Fext Book(s) Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43 	Unit-5 ROLE PLAYS IN JAPANESE	12 hours		
2. Writing Short paragraphs & Dialogues 3. A demonstration on usage of chopsticks and Japanese tea party (12)	1. Framing simple questions & answers			
A demonstration on usage of chopsticks and Japanese tea party (12) Total Lecture hours: 60 hours Fext Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	2. Writing Short paragraphs & Dialogues			
Total Lecture hours: 60 hours Fext Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	3. A demonstration on usage of chopsticks and Japanese tea party (12)			
Image: Text Book(s) 1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)", Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	Total Lecture hours:	60 hours		
1.Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized Version)",Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	Text Book(s)			
Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 43	1. Minna no Nihongo, Honsatsu Roma "ji ban (Main Textbook Romanized	Version)",		
	Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Pa	ige 43		

	International publisher – 3A Corporation., Tokyo, 2012
Reference	e Books
1.	Eri Banno et.al "Genki I: An Integrated Course in Elementary Japanese I -Workbook", ., 1999
2.	Tae Kim "A Guide to Japanese Grammar: A Japanese Approach to Learning Japanese Grammar", 2014
3.	Minna No Nihongo "Translation & Grammatical Notes In English Elementary",

Course Code	Course Title	L	Т	Ρ	J	С
		3	2	0	0	4
22BST202	STATISTICS AND NUMERICAL METHODS	Syllabus			v 20	
		version		on	V. 2.0	

COURSE OBJECTIVES:

- 1. This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- 2. To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- 3. To introduce the basic concepts of solving algebraic and transcendental equations.
- 4. To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- 5. To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

COURSE OUTCOME:

- 1. Apply the concept of testing of hypothesis for small and large samples in real life problems.
- 2. Apply the basic concepts of classifications of design of experiments in the field of agriculture.
- 3. Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.
- 4. Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
- 5. Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

UNIT-1

TESTING OF HYPOTHESIS

12 HOURS

Sampling distributions - Tests for single mean, proportion and difference of means (Large and small samples) – Tests for single variance and equality of variances – Chi square test for goodness of fit

UNIT-2	DESIGN OF EXPERIMENTS	12 HOURS
One way a Latin squar	nd two-way classifications - Completely randomized design – Randomize	ed block design –
UNIT-3	SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS	12 HOURS
Newton Ra - Gauss Jo by Power r	phson method- Solution of linear system of equations - Gauss elimination r rdan method – Iterative methods of Gauss Jacobi and Gauss Seidel- Eigen nethod.	method – Pivoting values of a matrix
UNIT-4	INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION	12 HOURS
Lagrange's interpolatio	and Newton's divided difference interpolations – Newton's forward and ba n – Numerical single and double integrations using Trapezoidal and Simps	ckward difference on's 1/3 rules.
UNIT-5	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS	12 HOURS
Taylor's se order differ equations.	ries method - Modified Euler's method - Fourth order Runge-Kutta metho ential equations - Milne's forth predictor corrector methods for solving first	od for solving first t order differential
	TOTAL LECTURE HOURS:	60 HOURS
IEXI BOO	rk(5)	
1.	Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering an Publishers, 10th Edition, New Delhi, 2015.	d Science", Khanna
2.	Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probabilit Engineers", Pearson Education, Asia, 8th Edition, 2015.	ty and Statistics for
REFEREN	CE BOOKS	
1.	Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage I	Learning, 2016.
2.	Devore. J.L., "Probability and Statistics for Engineering and the Sciences" New Delhi, 8th Edition, 2014	, Cengage Learning,
3.	Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson E Delhi, 7th Edition, 2007.	ducation, Asia, New
4.	Gupta S.C. and Kapoor V. K., "Fundamentals of Mathematical Statistic Sons, New Delhi, 12th Edition, 2020.	cs", Sultan Chand &
5.	Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outlines Statistics ", Tata McGraw Hill Edition. 4th Edition. 2012.	on Probability and
6.	Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Sta and Scientists", 9th Edition, Pearson Education, Asia, 2010.	itistics for Engineers

Course Code	Course Title	L	Т	Ρ	J	С
22AGT201	PRINCIPLES OF CROP PRODUCTION AND	2	0	2	0	3

	AGRONOMY			
Pre-requisite		Sy	llabus	v 10
		ve	ersion	V. 1.0
COURSE OBJECT	VES:			
1. TO Introduce the	students to principles of agricultural and nonlicultural c	rop pro	oduction	
2. Understand the	different management practices during crop establishme	ont ar	nd arowt	-
4 To introduce the	production practices of agricultural and borticultural cr	nons	iu grown	1.
5 To delineate the	role of agricultural engineers in relation to various cron	o produ	uction pr	actices
		prode		
COURSE OUTCON	IE:			
After the completion	on of the course, student will be able to:			
1. Students compl	eting this course would have acquired knowledge on th	ne bas	ic princip	les of crop
production				
2. Students will be	able to select suitable crops and decide upon its estab	lishme	ent proce	dures
3. Students will ge	t knowledge on the different crop management practice	S		
4. The students wi	Il have the required knowledge in the area of productio	n of ag	gricultura	l and
horticultural crops				
5. Students will be	able to delineate their role in relation to various crop pr	oducti	on practi	ces
Unit-1	AGRICULTURE AND CROP PRODUCTION		9 hour	6
Introduction to agric	culture and its crop production sub-sectors - field crop	prod	uction ar	nd horticulture
Factors affecting cro	p growth and production: genetic (internal) and environr	nental	(externa	I) factors; Cro
management throug	gh environmental modification and adaptation of crops	s to th	e existin	g environmer
through crop cultura	I practices			
Lipit 2	CROR SELECTION AND ESTABLISHMENT		0 hour	<u> </u>
Regional and seas	sonal selection of crops: Systems of crop production:	Comp	etition a	mong crop
nlante: Spacing and	d arrangement of crop plants: Field proparation for group		ding evet	ome of tillago
Establishment of a	n adequate crop stand and ground cover including sele	s inclue	and treat	ment of seed
and nursery growin	in adequate crop stand and ground cover, including set			ment of seed
Unit-3			9 hour	6
Crop water Manag	oment: Crep putrition management - need for suppler	nontat	ion to so	vil supplied
	ement, Crop nutrition management - need for supplet		ion to st	
numerius, sources,	fertigation scheduling: Crop protection including mana	appilo	t of woo	de poste ope
nathogens: Integra	ted methods of managing water, nutrients and plant pro	otectio	n UI Wee	and mothode
of harvest	ted methods of managing water, numents and plant pit		n, rypes	
Unit-4 PF	RODUCTION PRACTICES OF AGRICULTURAL CRO	PS	9 hour	6

Generaliz cereal cro such as th	eed management and cultivation practices for important groups of field crops in Tamil Nadu: ops, grain legumes, oil seed crops, sugarcane, and fiber crops, and special purpose crops hose grown for green manure and fodder.
Unit-5	PRODUCTION PRACTICES OF HORTICULTURAL CROPS 9 hours
Important crops; Cu horticultur	t groups of horticultural crops in Tamil Nadu such as vegetable crops, fruit crops, flower ultivation practices of representatives of each group; Special features of production of ral crops - green house cultivation
	TOTAL LECTURE HOURS: 45 HOURS
TEXT BOO	DK(S):
1.	Rajendra Prasad, Text Book of Field Crop Production. Directorate of Information and Publication, Krishi Anusandhan Bhavan, Pusa, New Delhi, 2015.
2.	Reddy T. Sankara G.H. Yellamanda Reddi, Principles of Agronomy, Kalyani Publishers, New Delhi, 2005
3.	Handbook of Agriculture. ICAR Publications, New Delhi, 2011
REFEREN	ICE BOOKS:
1.	Bose T. K. and L.P.Yadav. Commercial Flowers, Naya Prakash, Calcutta.1989
2.	Crop Production Guide, Tamil Nadu Agricultural University Publication, Coimbatore. 2005
3.	Kumar, N., Abdul Khader, M. Rangaswami, P. and Irulappan, I. Introduction to spices, plantation crops, medicinal and aromatic plants. Rajalakshmi Publications, Nagercoil. 1993
List of Ch	allenging Experiments (Indicative)
Identificatio	on of field and horticultural crops
Seeds - es	stimation of seed rate, germination of seeds
Nursery, d	emonstration on different types in field
Fertilizers-	type, estimation of recommended dose
Weeds, id	entification of major weed type, demonstration on simple weeding implements.
Weedicide	e uses and caution
Pest identi	ification and control, demonstration of IPM methods
Harvesting	methods for various field and horticultural crops and implements used
Observing of growth s	in demonstration field, cultivation of wetland, dry land and garden land crops and documentir stage and recording of biometric observations.

Total Laboratory Hours

15 hours

Course Code **Course Title** Ρ J С Т L **BASIC ELECTRICAL, ELECTRONICS** 0 0 22EST201 3 0 3 ENGINEERING AND MEASUREMENTS Syllabus Pre-requisite v. 1.0 version COURSE OBJECTIVES: 1. To introduce the basics of electric circuits and analysis 2. To impart knowledge in the basics of working principles and application of electrical machines 3. To introduce analog devices and their characteristics 4. To educate on the fundamental concepts of linear integrated circuits 5. To introduce the functional elements and working of measuring instruments. COURSE OUTCOME: 1. Compute the electric circuit parameters for simple problems 2. Explain the working principle and applications of electrical machines 3. Analyze the characteristics of analog electronic devices 4. Explain the basic concepts of linear integrated circuits 5. Explain the operating principles of measuring instruments. UNIT-1 **ELECTRICAL CIRCUITS** 9 HOURS DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor - Ohm's Law - Kirchhoff's Laws -Independent and Dependent Sources - Simple problems- Nodal Analysis, Mesh analysis with Independent sources only (Steady state) Introduction to AC Circuits and Parameters: Waveforms, Average value, RMS Value, Instantaneous power, real power, reactive power and apparent power, power factor – Steady state analysis of RLC circuits (Simple problems only) UNIT-2 **ELECTRICAL MACHINES** 9 HOURS Construction and Working principle- DC Separately and Self excited Generators, EMF equation, Types and Applications. Working Principle of DC motors, Torque Equation, Types and Applications. Construction, Working principle and Applications of Transformer, Three phase Alternator, Synchronous motor and Three Phase Induction Motor. UNIT-3 ANALOG ELECTRONICS 9 HOURS Resistor, Inductor and Capacitor in Electronic Circuits- Semiconductor Materials: Silicon & Germanium -PN Junction Diodes, Zener Diode – Characteristics Applications – Bipolar Junction Transistor-Biasing, JFET, SCR, MOSFET, IGBT – Types, I-V Characteristics and Applications, Rectifier and Inverters

UNIT-4	LINEAR INTEGRATED CIRCUITS	9 HOURS
Ideal OP summer, type ADC	-AMP characteristics, Basic applications of op-amp – Inverting an differentiator and integrator-S/H circuit, D/A converter (R- 2R lade using OP-AMPS . Functional block, characteristics of 555 timer– As	d Non-inverting Amplifiers, ler), A/D converters- Flash stable multi-vibrator mode.
UNIT-5	MEASUREMENTS AND INSTRUMENTATION	9 HOURS
Function	al elements of an instrument, Standards and calibration, Operating Pl	inciple, types -Moving Coil
and Mov	ng Iron meters, Measurement of three phase power, Energy Meter	, Instrument Transformers-
CT and F	T,DSO- Block diagram- Data acquisition	1
	TOTAL LECTURE HOURS:	45 HOURS
TEXT BO	OK(S):	
1	D P Kothari and I.J Nagrath, "Basic Electrical and Electronics	Engineering", McGraw Hill
1.	Education, Second Edition, 2020.	
2.	Allan S Moris, "Measurement and Instrumentation Principles", Heinemann, 2001	Third Edition, Butterworth
3.	S.K. Bhattacharya, Basic Electrical Engineering, Pearson Educatio	n, 2019
4.	James A .Svoboda, Richard C. Dorf, "Dorf's Introduction to Electric	Circuits", Wiley, 2018.
REFERE	NCE BOOKS:	
1.	Thomas L. Floyd, 'Electronic Devices', 10th Edition, Pearson Education	ation, 2018
2.	A.K. Sawhney, Puneet Sawhney 'A Course in Electrical & Electroni Instrumentation', Dhanpat Rai and Co, New Delhi, January 2015.	c Measurements &
3.	Albert Malvino, David Bates, 'Electronic Principles, McGraw Hill Ed	ucation; 7th edition, 2017

Course Code	Course Title	L	Т	Ρ	J	С
	ENGINEERING GRAPHICS	1	0	4	0	3
22EST202		0) ·	Sylla vers	bus ion	v.	2.0

COURSE OBJECTIVES:

- 1. To develop students, graphic skills for communication of concepts, ideas and design of engineering products.
- 2. To expose them to existing National standards related to technical drawings.
- 3. To Familiarize with basic geometrical constructions and orthographic projections.
- 4. To make the students to draw the different projections of the solids.
- 5. To view the true shape and apparent shape of the sectioned solids and their developments.
- 6. To get an idea about 3D views through isometric projections.

COURSE OUTCOME:

1	Perform basic deometrica	I constructions and principles of	orthographic projections
•••	i ononn baolo goomoaloc		oranographic projocaono.

- 2. Project orthographic projections of lines and plane surfaces.
- 3. Draw projections of solids and development of surfaces.
- 4. Visualize and to project isometric views and conversion of Isometric views to Orthographic views.

5. Understand the basics of AUTO CAD and fundamentals of perspective projections.

UNIT-0 CONCEPTS AND CONVENTIONS (Not for Examination) 3+9 HOURS

Importance of graphics in engineering applications — Use of drafting instruments - BIS conventions and specifications — Size, layout and folding of drawing sheets — Lettering and dimensioning.

UNIT-1 PLANE CURVES, PROJECTIONOF POINTS AND LINES 3+9 HOURS

Conic Sections - Construction of Ellipse, Parabola & hyperbola by eccentricity method – Construction of cycloid. Introduction of Orthographic projection.

First angle projection - projection of points and Projection of Lines (only for understanding)

UNIT-2 PROJECTION OF PLANES AND SOLIDS 3+9 HOURS

Projection of simple planes (Square, circular, Hexagon, Pentagon) inclined to both the principal planes by rotating object method. Projection of simple solids like Prism, Pyramid, Cylinder& Cone when the axis is inclined to one of the principal planes by rotating object method.

UNIT-3 SECTION AND DEVELOPMENT SURFACES OF SOLIDS 3+9 HOURS

Sectioning of simple solids (Prism, Pyramid, Cylinder& Cone) in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of surfaces of right regular sectioned solids

UNIT-4 ISOMETRIC AND ORTHOGRAPHIC PROJECTIONS 3+9 HOURS

Principles of Isometric Projections-Isometric scale- Isometric Views of simple and truncated solids. Conversion of Isometric views of the objects to Orthographic views Exercises using free hand sketching.

UNIT-5	COMPUTER AIDED DRAFTING (Only for Internal	3+9 HOURS
	Evaluation)	

Introduction to engineering graphics CAD tools, Drawing Orthographic views from Isometric views using CAD tools--Floor plans of simple buildings- Exercise of circuit diagram (2D Orthographic Views) and 3D modeling (Isometric Views) using AutoCAD Software.

Special points applicable to University Examinations on Engineering Graphics:

1. There will be five questions, each of either or type covering all units of the syllabus.

2. All questions will carry equal marks of 20 each making a total of 100.

3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size

4. The examination will be conducted in appropriate sessions on the same day

TOTAL LECTURE HOURS: 60 HOURS

TEXT BOOK(S):

4	Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Pul	olishing House, 53rd
1.	Edition, 2019.	
	Natraian K V "A Text Book of Engineering Graphics" Dhanalakshmi	Publishers Chennai
2.	Natiajar N.V., A Text book of Engineering Graphics, Dhahalakshini	rubiisiicis, Giiciiiiai,
	2018. Deuthese such v. N. C. and Vale Munchi, "Engine aging Drewing", Outend U	
3.	Partnasaratny, N. S. and Vela Murall, Engineering Drawing, Oxford U	niversity Press, 2015
REFERENC	E BOOKS:	
1.	Basant Agarwal and Agarwal C.M., "Engineering Drawing", McGraw Hi	ill, 2nd Edit ion, 2019.
0	Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), S	Subhas Publications,
Ζ.	Bangalore, 27 th Edition, 2017.	
	Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineer	ing Drawing with an
3.	introduction to Interactive Computer Graphics for Design and Production	on, Eastern Economy
	Edition Prentice Hall of India Pvt. Ltd. New Delhi, 2005	, ,
4	Parthasarathy N. S. and Vela Murali, "Engineering Graphics", Oxford U	niversity, Press, New
4.	Delhi. 2015.	
F	Shah M.B., and Rana B.C., "Engineering Drawing", Pearson Education	on India, 2nd Edition,
э.	2009.	
-	Venugopal K. and Prabhu Raja V., "Engineering Graphics", New A	Age International (P)
6.	Limited. 2008.	č
	LIST OF EQUIPMENTS	
S. NO	DESCRIPTION OF EQUIPMENT	QUANTITY

S. NO DESCRIPTION OF EQUIPMENT	QUANTITY
1. Computer nodes or systems with suitable graphics	facility 30 Nos
2. Software for Drafting and Modelling	30 Nos
3. Laser Printer or Plotter to print / plot drawings	1 No

LIST OF EXPERIMETS:

- 1. Drawing of a title block with necessary text, projection symbol and lettering using drafting software.
- 2. Drafting of Conic curves Ellipse, Parabola and Hyperbola
- 3. Drawing orthographic view of simple solids like Prism, Pyramids, Cylinder, Cone, etc, and dimensioning.
- 4. Drawing of simple solids like prism and pyramids when the axis is inclined to HP.
- 5. Drawing of simple solids like cylinder and cone when the axis is inclined to HP.
- 6. Drawing isometric projection of simple solids.
- 7. Drawing of star -delta starter circuit
- 8. Drawing an electrical circuit of three-point starter.
- 9. Drawing of an electrical power supply circuit.
- 10. Drawing of Hartley oscillator.

Course Code	Course Title	L	Т	Ρ	J	С
22HSM201	TAMILS AND TECHNOLOGY	1	0	0	0	1
Pre-requisite		Sy ve	llab ersic	ous on	v.	1.0

Unit-1	WEAVING AND CERAMIC TECHNOLOGY	03 hours
Veaving Inc BRW) – Gra	Justry during Sangam Age – Ceramic technology – Black and Red Ware Pot affiti on Potteries.	teries
Unit-2	DESIGN AND CONSTRUCTION TECHNOLOGY	03 hours
	nd Structural construction House & Designs in household materials during S	angam
Ade - Ruildir	nd Structural construction house & Designs in household materials during S	ns in
Silappathika	ram - Sculptures and Temples of Mamallapuram - Great Temples of Cho	las and other
worship plac	ces - Temples of Nayaka Period - Type study (Madurai Meenakshi Templ	e)- Thirumalai
Nayakar Ma	hal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during B	ritish Period.
Jnit-3	MANUFACTURING TECHNOLOGY	03 hours
Art of Shin B	Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper ar	nd gold- Coins
as source o	of history - Minting of Coins – Beads making-industries Stone beads -	lass beads -
Terracotta h	eads -Shell beads/ bone beats - Archeological evidences - Gem stone type	s described in
Silappathika	iram.	
••		
Unit-4	AGRICULTURE AND IRRIGATION TECHNOLOGY	03 hours
		00 110413
Dam Tank	ponds Sluice Significance of Kumizhi Thoompu of Chola Period Anima	
Dam, Tank, Wells design	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima	Husbandry -
Dam, Tank, Wells desigr	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima ned for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society	Husbandry - heries – Pearl
Dam, Tank, Wells desigr - Conche div	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima ned for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society.	Husbandry - heries – Pearl
Dam, Tank, Wells desigr - Conche div Jnit-5	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima ned for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society.	Husbandry - heries – Pearl
Dam, Tank, Wells desigr - Conche div Unit-5	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima ned for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society.	I Husbandry - heries – Pearl
Dam, Tank, Wells desigr - Conche div Jnit-5 Developmer	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima ned for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING nt of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Determined Formation (Scientific Tamil - Tamil Computing – Digitalization of Tamil Books – Determined Formation (Scientific Tamil - Tamil Computing – Digitalization of Tamil Books – Determined Formation (Scientific Tamil - Tamil Computing – Digitalization of Tamil Books – Determined Formation (Scientific Tamil - Tamil Computing – Digitalization of Tamil Books – Determined Formation (Scientific Tamil - Tamil Computing – Digitalization (Scientific Tamil - Tamil - Tamil Computing – Digitalization (Scientific Tamil - Tamil - Tamil - Tamil Computing – Digitalization (Scientific Tamil - Tami	03 hours
Dam, Tank, Wells desigr - Conche div Unit-5 Developmer Tamil Softwa	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima ned for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING nt of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Deare – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionari	03 hours evelopment of les – Sorkuvai
Dam, Tank, Wells desigr - Conche div Jnit-5 Developmer Tamil Softwa Project.	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima ned for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING nt of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – De Total Lecture hour	03 hours 03 hours evelopment of ies – Sorkuvai
Dam, Tank, Wells desigr - Conche div Unit-5 Developmer Tamil Softwa Project.	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima ned for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING nt of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – De are – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionari Total Lecture hour	00 nours I Husbandry - heries – Pearl 03 hours evelopment of ies – Sorkuvai s: 15 hours
Dam, Tank, Wells desigr - Conche div Unit-5 Developmer Tamil Softwa Project.	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima ned for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING at of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – De are – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionari Total Lecture hour	00 nours I Husbandry - heries – Pearl 03 hours evelopment of es – Sorkuvai s: 15 hours
Dam, Tank, Wells desigr - Conche div Unit-5 Developmer Tamil Softwa Project.	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima ned for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING nt of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – De are – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionari Total Lecture hour K(S)	00 nours I Husbandry - heries – Pearl 03 hours evelopment of ies – Sorkuvai s: 15 hours
Dam, Tank, Wells desigr - Conche div Unit-5 Developmer Tamil Softwa Project. TEXT BOOP	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima ned for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING nt of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – De are – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionari Total Lecture hour K(S) The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Pub- International Institute of Tamil Studies)	00 nours I Husbandry - heries – Pearl 03 hours evelopment of es – Sorkuvai s: 15 hours olished by:
Dam, Tank, Wells desigr - Conche div Unit-5 Developmer Tamil Softwa Project. TEXT BOOP 1.	And	00 nours I Husbandry - heries – Pearl 03 hours evelopment of es – Sorkuvai s: 15 hours vished by:
Dam, Tank, Wells desigr - Conche div Unit-5 Developmer Tamil Softwa Project. TEXT BOOP 1.	And Andrew Control of Co	00 nours I Husbandry - heries – Pearl 03 hours evelopment of ese – Sorkuvai s: 15 hours blished by: ublished by:
Dam, Tank, Wells desigr Conche div Jnit-5 Developmer Tamil Softwa Project. TEXT BOOH 1. 2.	Animal Provide Terminal Processing Processing Processing - Knowledge of Sea - Fisting - Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING Ant of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Defare – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionari Total Lecture hour K(S) The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Public International Institute of Tamil Studies.) Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Public Department of Archaeology & Tamil Nadu Text Book and Educational Servertation	03 hours evelopment of s: 15 hours olished by: vices
Dam, Tank, Wells desigr Conche div Jnit-5 Developmer Tamil Softwa Project. TEXT BOOH 1. 2.	Ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima ned for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING nt of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Deare – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionari Total Lecture hour K(S) The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Publinternational Institute of Tamil Studies.) Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Publication, Department of Archaeology & Tamil Nadu Text Book and Educational Series (Corporation,	03 hours 03 hours evelopment of es – Sorkuvai s: 15 hours blished by: vices
Dam, Tank, Wells desigr - Conche div Unit-5 Developmen Tamil Softwa Project. TEXT BOOP 1. 2. 3.	Ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima ned for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING nt of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – De are – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionari Total Lecture hour K(S) The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Public International Institute of Tamil Studies.) Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Public Corporation, Tamilaga Varalaru, Makalum Panpadum- Dr. K.K. Pillai	03 hours evelopment of ies – Sorkuvai s: 15 hours olished by: vices
Dam, Tank, Wells desigr - Conche div Unit-5 Developmer Tamil Softwa Project. 1. 2. 3. 4.	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima ned for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING at of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – De are – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionari Total Lecture hour ((S) The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Public International Institute of Tamil Studies.) Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Public Department of Archaeology & Tamil Nadu Text Book and Educational Set Corporation, Tamilaga Varalaru, Makalum Panpadum- Dr. K.K. Pillai Kanini Tamil- Munaivar L. Sundaram	00 nours I Husbandry - heries – Pearl 03 hours evelopment of es – Sorkuvai s: 15 hours blished by: ublished by: vices
Dam, Tank, Wells desigr - Conche div Jnit-5 Developmer Tamil Softwa Project. TEXT BOOH 1. 2. 3. 4. 5.	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima ned for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING nt of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – De are – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionari Total Lecture hour K(S) The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Publinternational Institute of Tamil Studies.) Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Publicational Sea Corporation, Tamilaga Varalaru, Makalum Panpadum- Dr. K.K. Pillai Kanini Tamil- Munaivar L. Sundaram Porunai- Attrangarai Nagarigam	03 hours 03 hours evelopment of es – Sorkuvai s: 15 hours blished by: vices
Dam, Tank, Wells desigr - Conche div Unit-5 Developmer Tamil Softwa Project. TEXT BOOH 1. 2. 3. 4. 5. REFERENC	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima hed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fis ving - Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING nt of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Deare – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionari Total Lecture hour K(S) The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Publinternational Institute of Tamil Studies.) Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Publication), Tamilaga Varalaru, Makalum Panpadum- Dr. K.K. Pillai Kanini Tamil- Munaivar L. Sundaram Porunai- Attrangarai Nagarigam	I Husbandry - heries – Pearl 03 hours evelopment of es – Sorkuvai s: 15 hours
Dam, Tank, Wells desigr - Conche div Unit-5 Developmer Tamil Softwa Project. 1. 2. 3. 4. 5. REFERENC	ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Anima hed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fissing - Ancient Knowledge of Ocean - Knowledge Specific Society. SCIENTIFIC TAMIL & TAMIL COMPUTING to f Scientific Tamil - Tamil computing – Digitalization of Tamil Books – De are – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionari Total Lecture hour ((S) The Contributions of the Tamils to Indian Culture (Dr. M. Valarmathi) (Pub International Institute of Tamil Studies.) Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Pu Department of Archaeology & Tamil Nadu Text Book and Educational Set Corporation, Tamilaga Varalaru, Makalum Panpadum- Dr. K.K. Pillai Kanini Tamil- Munaivar L. Sundaram Porunai- Attrangarai Nagarigam EBOOKS	I Husbandry - heries – Pearl 03 hours evelopment of es – Sorkuvai s: 15 hours blished by: vices

2.	Social Life of the Tamils - The Classical Period (Dr. S. Singaravelu) (Published by: International Institute of Tamil Studies.
3.	Historical Heritage of the Tamils (Dr. S. V. Subatamanian, Dr. K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
4.	Studies in the History of India with Special Reference to Tamil Nadu (Dr. K.K. Pillay) (Published by: The Author)
5.	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
6.	Journey of Civilization Indus to Vaigai (R. Balakrishnan) (Published by: RMRL) – Reference Book

Course Code	Course Title	L	Т	Ρ	J	С
22EET202	Skill Development Training-II (Student READY)	2	0	0	0	2
Pre-requisite		5	Sylla vers	bus ion	ν	v. 1.0

COURSE OBJECTIVES:

- 1. Learn design thinking concepts and principles
- 2. Use design thinking methods in every stage of the problem
- 3. Learn the different phases of design thinking
- 4. Apply various methods in design thinking to different problems
- 5. Apply the various the testing and implementation

COURSE OUTCOME:

- 1. Innovation of the new environmental conditions
- 2. Define key concepts of design thinking
- 3. Practice design thinking in all stages of problem-solving
- 4. Apply design thinking approach to real-world problems
- 5. Understand the testing and implementation

INNOVATIONS

UNIT-1

6 HOURS

6 HOURS

Introduction, innovation in current environment, types of innovation, schools of innovation, analyzing the current business scenario, challenges of innovation, steps of innovation management, experimentation in innovation management, participation for innovation, co-creation for innovation, prototyping to incubation. blue ocean strategy –I, blue ocean strategy-II. marketing of innovation, technology innovation process.

UNIT-2

Design Thinking Approach:-Introduction to Design Thinking, Iterative Design Thinking Process Stages. Design Thinking as Divergent-Convergent Questioning. Design Thinking in a Team Environment, System Thinking, Product Thinking.

UNIT-3	UNDERSTAND, OBSERVE AND DEFINE THE PROBLEM	6 HOURS

Search field Reformulatio Empathetic I needs.	determination - Problem clarification - Understanding of the problem n of the problem - Observation Phase - Empathetic design - Tips for o Design - Point-of-View Phase - Characterization of the target group - D	n - Problem analysis - bserving - Methods for Description of customer
UNIT-4	IDEATION AND PROTOTYPING	6 HOURS
Ideate Phase - Prototype F techniques.	e - The creative process and creative principles - Creativity technique Phase - Lean Startup Method for Prototype Development - Visualiza	s - Evaluation of ideas ation and presentation
UNIT-5	TESTING AND IMPLEMENTATION	6 HOURS
Test Phase - workshops - Thinking mee	Tips for interviews - Tips for surveys - Kano Model - Desirability Test Requirements for the space - Material requirements - Agility for De ets the corporation – The New Social Contract – Design Activism – De TOTAL LECTURE HOURS:	sting - How to conduct esign Thinking. Design esigning tomorrow. 30 HOURS
TEXT BOOK	K(S):	
1.	Christian Mueller-Rotenberg, Handbook of Design Thinking - Tips & Thinking.	Tools for how to design
2.	Designing for Growth: a design thinking tool kit for managers by Je Ogilvie.	anne Liedtka and Tim
3.	Change by Design: How Design Thinking Transforms Organizations a by Tim Brown.	and Inspires Innovation
4.	John. R. Karsnitz, Stephen O'Brien and John P. Hutchinson, Cengage Learning (International edition) Second Edition, 2013	"Engineering Design",
REFERENC	E BOOKS:	
1.	Johnny Schneider, "Understanding Design Thinking, Lean and Agile"	', O'Reilly Media, 2017.
2.	Roger Martin, "The Design of Business: Why Design Thinking is Advantage", Harvard Business Press, 2009.	the Next Competitive
3.	Hasso Plattner, Christoph Meinel and Larry Leifer (eds), "Design T Improve – Apply", Springer, 201 4. http://ajjuliani.com/design-thinking-activities/ 5. https://venturewell.or	hinking: Understand – g/class-exercises
4.	Yousef Haik and Tamer M.Shahin, "Engineering Design Process Second Edition, 2011.	", Cengage Learning,

			-	_		
Course Code	Course litle			P	J	C
00505004		0	0	3	0	1.5
22ESP201	ENGINEERING PRODUCT LABORATORY	Sy	labu	S	v. 2	2.0
		vei	sion		Ļ	
COURSE OBJECTIVE	ES: The main learning objective of this course is	s to	prov	ide	han	ds on
training to the studen	its in:					<u> </u>
1. Drawing pipe lir	ne plan; laying and connecting various pipe fittings use	ed in	comr	mon	hous	sehold
wood work	Sawing, planning, making joints in wood materials use	am	COLLI	non	nous	senoia
2. Wiring various e	electrical ioints in common household electrical wire w	ork.				
3. Welding variou	is joints in steel plates using arc welding work; M	achir	ning	vario	ous :	simple
processes like	turning, drilling, tapping in parts; Assembling simple	mecl	nanic	al as	ssem	hbly of
common house	hold equipments; Making a tray out of metal sheet us	ing s	heet	meta	al wo	ork.
4. Soldering and	testing simple electronic circuits; Assembling and te	esting	g sim	ple	eleo	ctronic
	At the end of the source, the student will be able t					
	At the end of the course, the student will be able				ما بو او	
1. Draw pipe line p	bian; lay and connect various pipe mungs used in comr		louse	enolo	und c	gniam
Work, Saw, plar	r, make joints in wood materials used in common nous	seno	ia wo		VOIK	•
2. Wire various ele	ectrical joints in common nousenoid electrical wire wo	IK.		ممام		
3. Weld various jo	inits in steel plates using arc weiding work, machine v	anou	IS SIN	npie	proc	esses
like turning, an	ming, tapping in parts; Assemble simple mechanica		semt	biy O	I CO	mmon
nousenoia equi	pments; make a tray out of metal sheet using sheet m	letai	WOrk	•		
4. Solder and test	simple electronic circuits; Assemble and test simple e	lectro		comp	one	nts on
LIST OF EXPERIMEN	TS:					
	GROUP – A (CIVIL & ELECTRICAL)	. –				
		15				
a) Connecting various	basic pipe fittings like valves, taps, coupling, unions	s, re	duce	rs, e	lbow	is and
other components which	ch are commonly used in household.					
b) Preparing plumbing	line sketches.					
c) Laying pipe connect	ion to the suction side of a pump					
d) Laying pipe connect	ion to the delivery side of a pump.					
e) Connecting pipes	of different materials: Metal, plastic and flexible pi	pes	used	in	hous	sehold
appliances.						
PART II ELECTR	ICAL ENGINEERING PRACTICES 15	•				
1. Residential house w	iring using switches, fuse, indicator, lamp and energy	mete	er.			
2. Fluorescent lamp wi	ring with introduction to CFL and LED types.					
3. Stair case wiring						
4. Residential house w	iring using fuse, switch, indicator, lamp and energy me	eter.				
5. Measurement of ene	ergy using single phase energy meter.					
	GROUP – B (MECHANICAL AND ELECTRONICS)					
PART III MECHANICA	L ENGINEERING PRACTICES 15					
WELDING WORK:						
Demonstrating welding	of Butt Joints, Lap Joints, and Tee Joints using arc w	eldir	ıg.			
Curriculum	and Syllabus B.Tech - Agricultural Engineering R2	022	Pao	ge 5	55	

BASIC MACHINING WORK:
Demonstrating of a) (simple)Turning. b) (simple)Drilling. c) (simple)Tapping.
3D PRINITNG:
Demonstrating of working principle of 3D Printer machine.
FOUNDRY WORK:
a) Demonstrating basic foundry operations
SHEET METAL WORK:
b) Making of a square tray
c) Making of a cone
FITTING EXERCISE:
Make a model by using fitting exercise
PART IV ELECTRONIC ENGINEERING PRACTICES 15
1. Study of Electronic components and equipments - Resistor, colour coding measurement of AC
signal parameter (peak-peak, rms period, frequency) using CR.
2.Study of logic gates AND, OR, EOR and NOT.
3.Generation of Clock Signal.
 Soldering practice – Components Devices and Circuits – Using general
purpose PCB.
5. Measurement of ripple factor of HWR and FWR.

TOTAL LABORATORY HOURS: 60 HOURS

Course Code	Course Title	L	Т	Ρ	J	С
	BASIC ELECTRICAL, ELECTRONICS					
22ESP202	ENGINEERING AND MEASUREMENTS	0	0	3	0	1.5
	LABORATORY					
Pre-requisite		Sy vi	/llab ersio	us n	V	. 1.0

COURSE OBJECTIVES:

1. To train the students in conducting load tests on electrical machines

2.To gain practical experience in characterizing electronic devices

3.To train the students to use DSO for measurements

COURSE OUTCOME:

After completing this course, the students will be able to

- 1. Use experimental methods to verify the Ohm's and Kirchhoff's Laws.
- 2. Analyze experimentally the load characteristics of electrical machines
- 3. Analyze the characteristics of basic electronic devices
- 4. Use DSO to measure the various parameters

LIST OF EXPERIMENTS:

ELECTRICAL

- 1. Verification of ohms and Kirchhoff's Laws.
- 2. Load test on DC Shunt Motor.
- 3. Load test on Self Excited DC Generator
- 4. Load test on Single phase Transformer
- 5. Load Test on Induction Motor

ELECTRONICS

6. Experiment on Transistor based application circuits (Inverting and non-inverting amplifier or switching circuits) (Or) Experiments on Operational Amplifier based Inverting and non-inverting amplifier.

7. Experiments on ADC.

8. Experiments on 555 timer

MEASUREMENTS

9. Study on function of DSO.

10. Measurement of Amplitude, Frequency, Time, Phase Measurement using DSO.

TOTAL LECTURE HOURS: 60 HOURS

COURSE CO	DE	COURSE TITLE	L	Т	Ρ	J	С
		NCC Credit Course Level 1*	1	0	0	0	1
22NCC201		(ARMY WING)	Syllabus version		v. ′	1.0	
UNIT-1 NCC GENERAL						OUI	۲S
NCC 1 Aims, Ol	ojectives	s & Organization of NCC					
NCC 2 Incentive	es						
NCC 3 Duties of	f NCC C	Cadet					
NCC 4 NCC Ca	mps: Ty	pes & Conduct					
UNIT-2	NATIO	NAL INTEGRATION AND AWARENESS			3 H	OUI	٦S
NI 1 National Int	tegratio	n: Importance & Necessity					
NI 2 Factors Aff	ecting N	lational Integration					
NI 3 Unity in Div	versity &	Role of NCC in Nation Building					
NI 4 Threats to	Nationa	Security					
UNIT-3	PERS	DNALITY DEVELOPMENT			3 H	OUI	RS
PD 1 Self-Aware	eness, E	Empathy, Critical & Creative Thinking, Decision Making	g and	d Pro	bler	n Sc	lving
PD 2 Communio	cation S	kills					
PD 3 Group Dis	cussion	: Stress & Emotions					
-							

UNIT-4	LEADERSHIP	2 HOURS					
L 1 Leadership	Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code						
L 2 Case Studies: Shivaji, Jhasi Ki Rani							
UNIT-5	SOCIAL SERVICE AND COMMUNITY DEVELOPMENT	4 HOURS					
SS 1 Basics, Ru	ural Development Programmes, NGOs, Contribution o Youth						
SS 2 Protection	of Children and Women Safety						
SS 3 Road / Ra	il Travel Safety						
SS 4 New Initia	tives						
SS 5 Cyber and	Mobile Security Awareness						
	TOTAL LECTURE HOURS	15 HOURS					

COURSE COD	E		COURSE	TITLE		L	Т	Ρ	J	С
		NCC	Credit Cou	rse Level 1*		1	0	0	0	1
22NCC202			(NAVAL V	VING)		Syllabus version			s v. 1.0	
UNIT-1	NCC GEN	IERAL					3	HO	URS)
NCC 1 Aims, Ob	ojectives 8	Corganization	n of NCC							
NCC 2 Incentive	es									
NCC 3 Duties of	f NCC Cad	det								
NCC 4 NCC Ca	mps: Type	es & Conduct								
UNIT-2	NATIONA	L INTEGRAT	ION AND A	WARENESS			3	3 HOURS		
NI 1 National Int	tegration:	Importance &	Necessity							
NI 2 Factors Aff	ecting Nat	ional Integrati	on							
NI 3 Unity in Div	ersity & R	ole of NCC in	Nation Buil	ding						
NI 4 Threats to I	National S	ecurity								
UNIT-3	PERSON	ALITY DEVEL	OPMENT				3	HO	URS	;
PD 1 Self-Aware	eness, Em	pathy, Critica	I & Creative	Thinking, Dec	ision Making	and	Prob	olem	Sol	ving
PD 2 Communic	cation Skill	ls								
PD 3 Group Dis	cussion: S	Stress & Emot	ions							
UNIT-4	LEADERS	SHIP					2	HO	URS	;
L 1 Leadership (L 2 Case Studie	Capsule: 1 s: Shivaji,	Fraits, Indicato Jhasi Ki Rani	ors, Motivati i	on, Moral Valu	ies, Honour C	Code				

UNIT-5	SOCIAL SERVICE AND COMMUNITY DEVELOPMENT	4 HOURS
SS 1 Basics, F	Rural Development Programmes, NGOs, Contribution o Youth	
SS 2 Protectio	n of Children and Women Safety	
SS 3 Road / R	ail Travel Safety	
SS 4 New Initia	atives	
SS 5 Cyber an	d Mobile Security Awareness	
	TOTAL LECTURE HOURS	15 HOURS

COURSE CODE	COURSE TITLE	L	Т	С				
	NCC Credit Course Level 1*	1	0	0	0	1		
22NCC203	(AIR FORCE WING)	Sy	/llak	abus 🛄		4.0		
		version				1.0		
UNIT-1	NCC GENERAL 3 HOURS							
NCC 1 Aims, Objectiv	ves & Organization of NCC							
NCC 2 Incentives								
NCC 3 Duties of NCC	C Cadet							
NCC 4 NCC Camps:	Types & Conduct							
UNIT-2	NATIONAL INTEGRATION AND AWARENESS			3 HC	OUR	S		
NI 1 National Integrat	tion: Importance & Necessity							
NI 2 Factors Affecting	g National Integration							
NI 3 Unity in Diversity	/ & Role of NCC in Nation Building							
NI 4 Threats to Natio	nal Security							
UNIT-3	PERSONALITY DEVELOPMENT		:	3 HC	OUR	S		
PD 1 Self-Awareness	s, Empathy, Critical & Creative Thinking, Decision Making and Pr	ob	lem	Solv	/ing			
PD 2 Communication	n Skills				•			
PD 3 Group Discussi	on: Stress & Emotions							
			-					
UNIT-4	LEADERSHIP		1	2 HC	OUR	S		
L 1 Leadership Caps	ule: Traits, Indicators, Motivation, Moral Values, Honour Code							
L 2 Case Studies: Sh	ivaji, Jhasi Ki Rani							
UNIT-5	SOCIAL SERVICE AND COMMUNITY DEVELOPMENT			4 HC	DUR	S		

SS 1 Basics, Rural Development Programmes, NGOs, Contribution o Youth

SS 2 Protection of Children and Women Safety

SS 3 Road / Rail Travel Safety

SS 4 New Initiatives

SS 5 Cyber and Mobile Security Awareness

TOTAL LECTURE HOURS 15 HOURS

<u>SEMESTER – III</u>

Course Co	ode	Course Title	L	Τ	Ρ	J	С
22BST30	3	Fourier Series and Linear Programming	3	2	0	0	4
Pre-reauis	ite		Syllabus v		v.	2.0	
			VE	ersio	n		
1 To introdu		rier series analysis which is central to many applications	in or	nain	oorir	na ar	art
from its up	se in sc	living boundary value problems		igin	COM	ig ap	an
	int the	student with Fourier series techniques in solving heat flo	wn	oble	ms		1 in
various si	ituation		w pi			uset	
3. To acqua	aint the	student with Fourier. transform techniques used in wide va	rietv	of s	situat	tions	
4. To have k	nowled	lae in solving linear programming problems.					
5. To acqua	int knov	vledge to solve transportation and assignment problems.					
6. To familia	6. To familiar with the method of solving nonlinear programming problems.						
COURSE OU	ТСОМЕ						
1. Apply Fe	ourier s	eries techniques used in wide variety of situations in which	h the	fur	nctio	ns us	sed
are not	periodic	and to solve boundary value problems.					
2. Apply the	he Four	ier transform techniques to solve boundary value problems	i.				
3. Develo	p a func	damental understanding of linear programming models, abl	e to	dev	elop	a lin	ear
program	nming n	nodel from problem description, apply the Simplex method	od fo	or s	olvin	g lin	ear
program	nming p	roblems.					
4. Analyze	e the c	oncept of developing, formulating, modelling and solving	trai	nsp	ortat	ion a	and
assignm	nent pro	blems.					
5. Determ	ine the	optimum solution for non-linear programming problems.					
Unit-1	Unit-1 FOURIER SERIES 12 hours						S
Dirichlet's con	ditions	- General Fourier series - Odd and even functions - Hal	f ran	ge	sine	serie	es
and cosine series – Root mean square value – Parseval's identity— Harmonic analysis.							
Unit-2		FOURIER TRANSFORMS			12	hour	S

Fourier cosine tran identity.	transform pair – Fourier sine nsforms – Properties – Transforms of simple functions – Convolution theorem -	and -Parseval's				
Unit-3	LINEAR PROGRAMMING PROBLEMS	12 hours				
Mathemat Big M Met	cal formulation – Graphical method – Simplex method – Artificial variable te hod – Two phase Simplex method	chniques –				
Unit-4	TRANSPORTATION AND ASSIGNMENT PROBLEMS	12 hours				
Matrix for Degenera	m – Loops in T.P – Initial basic feasible solutions – Transportation a cy in T.P – Assignment and Routing problems.	algorithm –				
Hueit C		40 h a una				
Unit-5	NON-LINEAR PROGRAMMING PROBLEMS	12 nours				
Lagrange Quadratic	multipliers – Equality constraints – Inequality constraints – Kuhn – Tucker C programming.	onditions –				
	Total Lecture hours:	60 hours				
TEXT BO	DK(S)					
1.	Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Pu Delhi, 2018.	blishers, New				
2.	H.A. Taha, "Operations Research – An introduction", 10th Edition, Pearson Ed Delhi, 2017.	ducation, New				
3.	Kanti Swarup, Guptha P.K. and Man Mohan, "Operations Research", 5th Edition, Sultan Chand & Sons, New Delhi, 2010.	l				
REFEREN	ICE BOOKS					
1.	Kreyszig E, "Advanced Engineering Mathematics", 10th Edition, John Wile India, 2016.	y, New Delhi,				
2.	2. Ravindran, Philips and Solberg "Operations Research, Principles and Practice", 2nd Edition, Wiley, New Delhi, 2007.					
3.	Frederick S Hillier and Gerald J. Lieberman, "Introduction to Operations F Graw Hill, New Delhi, 2017.	Research", Mc				
4.	J.K. Sharma," Operations Research – Theory and Applications ", Mac Millan India Ltd ,2 nd Edition, New Delhi, 2003.					
5.	5.Richard Bronson & Govindasami Naadimuthu, "Operations Research" (Schaum's Outlines – TMH Edition) Tata McGraw Hill, 2nd Edition, New Delhi, 2004.					

Course Code	Course Title	L	Τ	Р	J	С
22AGT301	Principles of Soil Science and Engineering	3	0	0	0	3
Pre-requisite		S v	yllat versi	ous on	v. 1.0	

Course Ob	inctivos:				
	ectives:	ra Darmashility			
1. To expos	e the students to the fundamental knowledge on Soll physical parameter	ers, Permeability			
2. Compact	ion, Bearing Capacity and types and methods of soil survey and interpre	etative			
groupings					
Course Ou	tcome:				
1. Understa	nd the fundamental knowledge of soil physical parameters.				
2. Perform	soil survey and classify soil based on its characteristics				
3. Explain th	ne phase relationship and soil compaction.				
4. Analyze I	Engineering properties of soil				
5. Understa	nd Concepts of bearing capacity and slope stability.				
Unit-1	Introduction and Soil Physics	9 hours			
Soil - defini	tion - major components -Soil forming minerals and processes - soil	profile -Physical			
properties -	texture – density-porosity-consistence-colour-specific gravity - capillary a	and non-capillary			
-plasticity. S	Soil air - soil temperature - soil water - classification of soil water- Move	ement soil water.			
Soil colloids	- organic and inorganic matter-Ion exchange- pH - Plant nutrient available	ability			
Unit-2	Soil Classification and Survey	9 hours			
Soil taxonor	ny – Soils of Tamil Nadu and India. Soil survey - types and methods of s	oil survey – Field			
mapping- m	apping units - base maps -preparation of survey reports - concepts a	and uses - Land			
Capability C	lasses and subclasses - soil suitability -Problem soils – Reclamation.				
Unit-3	Phase Relationship and Soil Compaction	9 hours			
Phase relat	ons- Gradation analysis- Atterberg Limits and Indices- Engineering Cla	ssification of soil			
– Soil comp	action- factors affecting compaction- field and laboratory methods.				
Unit-4	Engineering Properties of Soil	9 hours			
Shear stren	gth of cohesive and cohesionless - Mohr-Coulomb failure theory- Measu	urement of shear			
strength, dir	ect shear, Triaxial and vane shear testPermeability- Coefficient of Perr	neability-Darcy's			
law-field and	d lab methods - Assessment of seepage - Compressibility.				
Unit-5	Bearing Capacity and Slope Stability	9 hours			
Bearing ca	pacity of soils - Factors affecting Bearing Capacity- Shallow foundation	tions-Terzaghi"s			
formula- BIS	S standards - Slope Stability-Analysis of infinite and finite slopes- friction	n circle method-			
slope protec	ction measures.				
	Total Lecture hours:	45 hours			
Text Book(s					
. N	yle C. Brady, "The Nature and Properties of Soil". Macmillan Publishing	g Company. 10 th			
1. E	1. Edition, New York, 2008.				

2.	Punmia, B.C., "Soil Mechanics and Foundation "Laxmi Publishers, New Delhi, 2007.						
Reference	Reference Books						
1.	1. Edward J. Plaster., "Soil Science", Cengage Learning India Ltd, New Delhi, 2009.						
2	Arora, K.R. "Soil Mechanics and Foundation Engineering", Standard Publishers and						
² . Distributors, New Delhi, 2007.							
3	Murthy, V.N.S. "Soil Mechanics and Foundation Engineering", UBS Publishers and						
5.	Distributors, New Delhi, 2007.						
1	Sehgal, S.B., "Text Book of Soil Mechanics", CBS Publishers and Distributors New Delhi,						
4.	2007.						

Course Code	Course Title	L	Т	Ρ	J	С	
22AGT302	Unit Operations in Agricultural Processing	2	0	2	0	3	
Pre-requisite		S	yllabı ersio	us n	V.	1.0	

1. The students would be exposed to the fundamental knowledge in Evaporation, Filtration, Sedimentation, Processing, Sieve analysis, Crystallization and Distillation in processing of agricultural produce.

Course Outcome:

1. Examine the evaporation process and types of evaporators for food industry

2. Analyze the principles of filtration and mechanical separation equipment

3. Identify size reduction and grinding equipment and understand the factors affecting the Process.

4. Identify the gas-liquid and solid-liquid equilibrium concepts and factors influencing equilibrium separation process.

5. Differentiate crystallization and distillation processes and identify processing equipment.

Unit-1	Evaporation And Concentration	6 hours						
Unit operations in food processing -conservation of mass and energy - overall view of an engineering								
process-dimensions and units - dimensional and unit consistency - dimensionless ratios-								
evaporation	evaporation – definition – liquid characteristics – single and multiple effect evaporation-performance							
of evaporat	of evaporators and boiling point elevation - capacity - economy and heat balance-types of							
evaporators	- once through and circulation evaporators - short tube evaporators	and long tube						
evaporators	– agitated film evaporator							

Unit-2

Mechanical Separation

6 hours

Filtration – definition –filter media – types and requirements-constant rate filtration – constant pressure filtration - filter cake resistance-filtration equipment - rotary vacuum filter - filter presssedimentation - gravitational sedimentation of particles in a fluid - Stoke's law, sedimentation of particles in gas-cyclones – settling under sedimentation and gravitational sedimentation-centrifugal separations - rate of separations - liquid - liquid separation - centrifuge equipment. Unit-3 Size Red

duction	

6 hours

Size reduction – grinding and cutting – principles of comminuting – characteristics of comminuted products - particle size distribution in comminuted products-energy and power requirements in comminuting – crushing efficiency – Rittinger's, Bond's and Kick's laws for crushing-size reduction equipment - crushers - jaw crusher, gyratory crusher-crushing rolls - grinders - hammer mills rolling compression mills - attrition, rod, ball and tube mills - construction and operation.

Unit-4 **Contact Equilibrium Separation** 6 hours Contact equilibrium separation processes - concentrations - gas-liquid and solid-liquid equilibrium equilibrium concentration relationships - operating conditions-calculation of separation in contact equilibrium processes-gas absorption - rate of gas absorption - stage - equilibrium gas - absorption equipment-properties of tower packing - types - construction - flow through packed towersextraction - rate of extraction - stage equilibrium extraction-equipment for leaching coarse solids intermediate solids – basket extractor-extraction of fine material – Dorr agitator – continuous leaching - decantation systems - extraction towers-washing - equipment

Unit-5

Crystallisation And Distillation

6 hours

Crystallization-Equilibrium -Rate of crystal growth stage-Equilibrium crystallization-Crystallizers-Equipment-Classification- Construction and operation – Crystallizers-Tank-Agitated batch-Swenson-Walker and Vacuum crystallizers-Distillation-Binary mixtures-Flash and differential distillation-Steam distillation - Theory-Continuous distillation with rectification - Vacuum distillation -Batch distillation-Operation and process-Advantages and limitation-Distillation equipment-Construction and operation-Factors influencing the operation.

> Total Lecture hours: 30 hours

Text Boo	ok(s)				
1.	Earle, R.L., "Unit operations in Food Processing", Pergamon Press, Oxford, U.K, 1985.				
2	McCabe, W.L., and Smith, J.C., "Unit Operations of Chemical Engineering", Mc-Graw-Hill				
۷.	Inc., Kosaido Printing Ltd., Tokyo, 1990.				
2	Geankoplis, C.J. "Transport Processes and Separation Process Principles", 4th Edition,				
З.	Prentice Hall, 2003.				
Reference Books					
1	Coulson, J.M and J.F. Richardson. Chemical Engineering. Volume I to V. The Pergamon				
1.	Press. New York, 1999.				
2	Albert Ibarz and Gustavo V. Barbosa-Cánovas. Unit Operations in Food Engineering. CRC				
Ζ.	Press LLC, Florida, 2003.				

List of (Challenging Experiments (Indicative)				
1.	Determination of thermal efficiency and economy of evaporator				
2.	Determination of separation efficiency of centrifugal separator				
3.	3. Determination of collection efficiency in cyclone separator				
4.	4. Determination of efficiency of liquid-solid separation by filtration				
5.	5. Determination of absorption efficiency in a packing tower				
6.	6. Performance evaluation of a sieve and determination of particle size of granular foods by sieve analysis				
7.	7. Determination of energy requirement in size reduction using the burr mill				
8.	Determination of energy requirement in size reduction using the bal	I mill and hammer mill			
9.	Determination of mixing index for solids				
10.	Determination of economy and thermal efficiency of rotary flash eva	aporator			
11.	11. Concentration of juice				
12.	Performance evaluation of a steam distillation process				
	Total Laboratory Hours	30 hours			

Course Code	Course Title	L	Т	Ρ	J	С
22AGT303	Fluid Mechanics and Pumps	3	0	0	0	3
Pre-requisite		S v	yllal ersi	bus ion	v. 1.0	

1. To introduce the students about the properties of the fluids, behaviour of fluids under static, kinematic and dynamic conditions through the control volume approach and expose them to the applications of the conservation laws and to impart basic knowledge of the dimensional analysis and model studies along with flow through pipes.

2. The students will be exposed to the basic concepts of open channel flows with significance to steady uniform flows along with flow measurements in open channels.

3. To expose the students to the classification of pumps the basic principles of working and to design centrifugal pump.

Course Outcome:

1. Demonstrate the properties of fluid and its behaviour in static conditions along with pressure measurements.

2. Apply the conservation laws applicable to fluid flows and its application through fluid kinematics

and dynamics.

3. Estimate losses in pipelines for both laminar and turbulent conditions and analysis of pipes connected in series and parallel and to understand the concept of application of dimensional analysis in model studies.

4. Describe the basics characteristics of open channel flows and analysis of steady uniform flow with hydraulically efficient channel sections and to measure the flows in artificial/natural channels.5. Explain the classification, design and working principles of various pumps.

Unit-1	Fluid Properties And Fluid Statics	9 hours		
Definition and properties of fluid - Mass density - Specific weight - Specific volume - Specific gravity				
- Equation	of state – Perfect gas - Viscosity – Vapour pressure – Compressibili	ty and elasticity -		
Surface ten	sion – Capillarity- Fluid statics – Fluid pressure and measurement – s	simple, differential		
and micro m	nanometers - Mechanical gauges - Forces on plane and curved surface	es - Buoyancy and		
floatation - S	Stability of floating bodies.			

Unit-2	Fluid Kinematics And Fluid Dynamics	9 hours
Classificatio	on of flows - Methods of analysis- Continuum hypothesis - System an	d Control volume
approach - S	Streamline, streak-line and path-lines - Stream function - Velocity poter	ntials - Flow nets -
Application	of control volume to continuity, energy and momentum - Euler's equatic	on of motion along
a stream lin	e - Bernoulli's equation - Linear momentum equation – Applications.	

Unit-3	Flow Through Pipes And Model Studies	9 hours
Reynolds e	xperiment - Laminar flow through circular pipe - Darcy-Weisbach e	equation - Moody
diagram - N	lajor and minor losses in pipe flow – Total energy line – Hydraulic grad	de line – Siphon -
Pipes in ser	ies and parallel- Equivalent pipes- Fundamental dimensions - Dimension	onal homogeneity
- Buckingha	m Pi theorem - Dimensionless parameters - Similitude and model studi	es - Distorted and
undistorted	models.	

Unit-4	Open Channel Flows	9 hours
Tunnen of f	our Characteristics of an an abannal Character Man	

Types of flow – Characteristics of open channel - Chezy's equation - Manning equation – Hydraulically efficient channel sections - Critical depth – Specific energy application to channel transitions – Flow measurement in channels – Notches – Weirs - Parshall flume - Flow measurement in natural streams – float method – current meter.

Unit-5	Pumps	9 hours			
Types of pumps – Head of pump – Losses and efficiencies -Selection of pump capacity - Centrifugal					
pump - Components - Working principle - Types of impellers - Priming - NPSH - Cavitation -					
Minimum speed to start the pump - Specific speed - Characteristics curves - Turbine pump					
Submersible pump - Jet pump – Air lift pump - Reciprocating pump - Sludge pump.					
	Total Lecture hours:	45 hours			

Text Book(s)

1	Streeter, V.L. Wylie, E. B. and Bedford K.W, Fluid Mechanics, McGraw Hill Education
	(India) Pvt. Ltd., New Delhi, 2017.
2	Modi P.N and Seth Hydraulics and Fluid Mechanics including Hydraulic Machines,
۷.	Standard Book House, New Delhi, 2019.
2	Subramanya K., Flow in Open Channels, McGraw Hill Education (India) Pvt. Ltd., New
Э.	Delhi, 2019.
Referen	ce Books
	Jain A. K. Fluid Mechanics including Hydraulic Machines, Khanna Publishers, New Delhi,
1.	2014.
n	S K Som; Gautam Biswas and S Chakraborty, Introduction to Fluid Mechanics and Fluid
Ζ.	Machines, McGraw Hill Education (India) Pvt. Ltd., 2017.
3.	Chandramouli P N, Applied Hydraulic Engineering, Yes Dee Publisher, 2017
4.	Ven Te Chow, Open Channel Hydraulics, McGraw Hill, New York, 2009.
Б	Subramanya K, Fluid Mechanics and Hydraulic Machines: Problems and Solutions,
5.	McGraw Hill Education (India) Pvt. Ltd., New Delhi, 2018.

Course Code	Course Title	L	Т	Ρ	J	С
22AGT304	Surveying and Levelling	3	0	0	0	3
Pre-requisite		Syllabus version		v	. 1.0	

 To introduce the rudiments of plane surveying and geodetic principles to Agricultural Engineers and to learn the various methods of plane and geodetic surveying to solve the real world problems.
 To introduce the concepts of Control Surveying. To introduce the basics of Astronomical Surveying.

Course Outcome:

1. Introduce the rudiments of various surveying and its principles.

- 2. Imparts knowledge in computation of levels of terrain and ground features
- 3. Imparts concepts of Theodolite Surveying for complex surveying operations
- 4. Understand the procedure for establishing horizontal and vertical control

5. Imparts the knowledge on modern surveying instruments

Unit-1	Fundamentals Of Conventional Surveying	9 hours
Definition -	 Classifications – Basic principles – Equipment and accessories for rangi 	ng and chaining
 Methods 	of ranging - Well conditioned triangles - Chain traversing - Compass - I	Basic principles
– Types –	Bearing – System and conversions – Sources of errors and Local attrac	tion – Magnetic
declination	- Dip - compass traversing - Plane table and its accessories - Merits	and demerits -
Radiation -	 Intersection – Resection – Plane table traversing. 	

Unit-2	Levelling	9 hours
Level lin	e – Horizontal line – Datum – Benchmarks – Levels and staves – Temporary	and permanent
adjustm	ents – Methods of leveling – Fly leveling – Check leveling – Procedure in lev	eling – Booking
- Reduc	tion – Curvature and refraction – Reciprocal leveling – Precise leveling - Co	ontouring.
Unit-3	Theodolite Surveying	9 hours
Horizon	al and vertical angle measurements - Temporary and permanent adjustn	nents – Heights
and dis	ances – Tacheometric surveying – Stadia Tacheometry – Tangential	Tacheometry –
Trigono	netric leveling – Single Plane method – Double Plane method.	
llnit_4	Control Surveying And Adjustment	9 hours
01111-4		5 11001 5
Horizon	al and vertical control – Methods – Triangulation – Traversing – Gale's tabl	e – Trilateration
- Conce methods	epts of measurements and errors – Error propagation and Linearization	n – Adjustment
method	- Least square methods - Angles, lengths and levening network.	
Unit-5	Modern Surveving	9 hours
Total St	ation: Digital Theodolite EDM Electronic field book Advantages Parts	and accessories
– Worki	anon. Digital Theodolite, EDM, Electionic field book – Advantages – Farts a	nd applications
GPS: A	dvantages – System components – Signal structure – Selective availability a	and antispoofing
receiver	components and antenna – Planning and data acquisition – Data proces	sing – Errors in
GPS – F	Field procedure and applications.	
	Total Lecture hours:	45 hours
Text Bo	ok(s)	
1	Dr. B. C. Punmia, Ashok K. Jain and Arun K Jain, Surveying Vol. I & II, La	kshmi
1.	Publications Pvt Ltd, New Delhi, Sixteenth Edition, 2016.	
2.	T. P. Kanetkarand S. V. Kulkarni, Surveying and Levelling, Parts 1 & 2, Griha Prakashan, Pune, 2008.	Pune Vidyarthi
Referen	ce Books	
1.	R. Subramanian, Surveying and Levelling, Oxford University Press, Secon	d Edition, 2012.
2.	James M. Anderson and Edward M. Mikhail, Surveying, Theory and Pre Edition, Mc Graw Hill 2001.	actice, Seventh
3.	Bannister and S. Raymond, Surveying, Seventh Edition, Longman 2004.	
4.	S. K. Roy, Fundamentals of Surveying, Second Edition, Prentice [^] Hall of In	ndia 2010.
5.	K. R. Arora, Surveying Vol I & II, Standard Book house, Twelfth Edition 20	13.
6.	C. Venkatramaiah, Textbook of Surveying, Universities Press, Second Edi	tion, 2011.

Course Code	Course Title	L	Т	Ρ	J	С	
22AGP301	FLUID MECHANICS LABORATORY	0	0	4	0	2	
Pre-requisite		Syllabus				v. 1.0	

1. Students should able to verify the principles studied in theory by performing the experiments in the laboratory.

Course Outcome:

- 1. Apply Bernoulli equation for calibration of flow measuring devices.
- 2. Measure friction factor in pipes and compare with Moody diagram
- 3. Determine the performance characteristics of rotodynamic pumps.
- 4. Determine the performance characteristics of positive displacement pumps.

LIST OF EXPERIMENTS:

- 1. Calibration of Rotameter
- 2. Flow through Venturimeter
- 3. Flow through a circular Orifice
- 4. Determination of mean velocity by Pitot tube
- 5. Flow through a Triangular Notch
- 6. Flow through a Rectangular Notch
- 7. Determination of friction coefficient in pipes
- 8. Determination of losses due to bends, fittings and elbows
- 9. Characteristics of Centrifugal pump
- 10. Characteristics of Submersible pump
- 11. Characteristics of Reciprocating pump

Total Lecture hours: 60hours

version

Course Code	Course Title	L	Т	Ρ	J	С	
22AGP302	SOIL SCIENCE LABORATORY	0	0	4	0	2	
Pre-requisite		Sy v	/llab ersic	us n	v. 1.0		

Course Objectives:

1. Students should able to verify various quality aspects of soil and water studied in theory by performing experiments in the laboratory.

Course Outcome:

Explain soil physical properties and compare the properties based on soil and water system.
 Analyse the soil chemical properties to classify the arable and problem soils to develop different reclamation practices.

LIST OF EXPERIMENTS:

- 1. Identification of rocks and minerals
- 2. Collection and processing of soil samples
- 3. Determination of soil moisture, EC and pH
- 4. Field density determination by Core Cutter and Sand Replacement method
- 5. Specific gravity determination by Pycnometer
- 6. Textural analysis of soil by International Pipette method
- 7. Grain size analysis by using Mechanical shake
- 8. Determination of Organic carbon
- 9. Estimation of Gypsum requirements
- 10. Estimation of Index properties of the soil

Total Lecture hours: 60hours

Course Code	Course Title	L	Т	Ρ	J	С	
22AGP303	SURVEYING AND LEVELLING LABORATORY	0	0	4	0	2	
Pre-requisite		Syllabus version		``	v. 1.0		

Course Objectives:

1. The student will possess knowledge about survey field techniques.

Course Outcome:

1. Impart knowledge on the usage of basic surveying instruments like chain/tape, compass and levelling instruments.

- 2. Able to use levelling instrument for surveying operations
- 3. Able to use theodolite for various surveying operations
- 4. Able to carry out necessary surveys for social infrastructures
- 5. Able to prepare planimetric maps

LIST OF EXPERIMENTS:

- 1. Study of chains and its accessories, Aligning, Ranging, Chaining and Marking Perpendicular offset.
- 2. Setting out works Foundation marking using tapes single Room and Double Room.
- 3. Compass Traversing Measuring Bearings & arriving included angles.
- 4. Fly levelling using Dumpy level & Tilting level.
- 5. Check levelling.
- 6. Measurements of horizontal angles by reiteration and repetition and vertical angles.
- 7. Determination of elevation of an object using single plane method when base is Accessible/inaccessible.
- 8. Determination of Tacheometric Constants.
- 9. Heights and distances by stadia Tacheometry.
- 10. Heights and distances by Tangential Tacheometry.
- 11. Traverse using Total station and Area of Traverse.

12. Determination of distance and difference in elevation between two inaccessible points using Total station.

Total Lecture hours: 60hours

SEMESTER - IV

Course Code		Course Title	L	Т	Ρ	J	С			
22AGT401		TRACTORS AND ENGINE SYSTEMS	3	0	0	0	3			
Pro-requisito			Sy	llab	us	v .	1 0			
r re-requisite			ve	rsic	n	۷.	1.0			
Course C	Objecti	ves:								
To introduce the students to the different systems and working principles of tractor, power										
tiller, makes of tractors and power tillers.										
_										
Course C	Dutcon									
On completion of the course, the student is expected to										
1. Get an idea on various machinery available for farm mechanization										
2. Calculate the valve timing of an IC engine and represent by a drawing										
3. Gain knowledge on the transmission system of a tractor										
4. Understand the hydraulic system in a tractor and estimate the traction.										
5. Gain knowledge on power tillers, bulldozers and different tractor testing procedures.										
				—						
Unit-1 TRACTORS				9 hours						
Classifica	ation of	tractors – I ractor engines – construction of engine blo	CKS,	cyl	linde	er he	ad			
and crank	kcase -	- features of cylinder, piston, connecting rod and crank	shaf	t –	firin	g or	der			
COMDUSIN	Un cha	IIDEIS.								
Linit 2				<u> </u>	0 h	<u></u>				
Valvos-in	lot and	engine 3131 ENS	vhai	let	311	ilonc) or			
Cooling s	vstems	= lubricating systems – fuel system – governor- electric	val e	uste Vste	- 5 m	ienc	, CI.			
eeemig e	yotome			,010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Unit-3		TRANSMISSION SYSTEMS			9 h	our				
					• II	our				
Transmission – clutch – gear box – sliding mesh – constant mesh – synchro mesh.										
Differential, final drive and wheels. Steering geometry – steering systems – front axle and										
wheel alig	gnment	. Brake – types – system.								
				—						
Unit-4		HYDRAULIC SYSTEMS			9 h	ours	3			
Hydraulic system – working principles, three-point linkage – draft control – weight transfer,										
theory of traction – tractive efficiency – tractor chassis mechanics – stability – longitudinal										
and lateral. Controls – visibility – operators seat.										

Unit-5	POWER TILLER, BULLDOZER AND TRACTOR TESTING	9 hours						
Power power	Power tiller – special features – clutch – gear box – steering and brake. Makes of tractors, power tillers and bulldozers. Bulldozer- salient features – turning mechanism, track							
mecha	mechanism, components - operations performed by bulldozers. Types of tests- test							
proce	procedure – need for testing & evaluation of farm tractor –Test code for performance testing							
of trac	of tractors and power tiller.							
	Total Lecture hours:	45 hours						
Text E	Book(s)							
1.	Jain, S.C. and C.R. Rai. Farm tractor maintenance and repair. Standard	publishers						
	and distributors, New Delhi, 1999.							
2.	Alfred V. Aho, John E. Hopperoft, Jeffrey D. Uilman, "Data Structures ar	nd						
	Algorithms", First Edition, Pearson Publishers, 1983.							
Reference Books								
1.	Barger, E.L., J.B. Liljedahl and E.C. McKibben, Tractors and their Power Units.							
	Wiley Eastern Pvt. Ltd., New Delhi, 1997.							
2.	Domkundwar A.V. A course in internal combustion engines. Dhanpat Ra	aí & Co. (P)						
	Ltd., Educational and Technical Publishers, Delhi, 1999.							
3.	Black, P.O. Diesel engine manual. Taraporevala Sons& Co., Mumbai, 1996.							
4.	Grouse, W.H. and Anglin, D.L. Automative mechanics. Macmillan McGraw- Hill,							
	Singapore, Indian Standard Codes for Agricultural Implements Published by ISI,							
	New Delhi, 1993.							
5	Jagadeeshwar Sahay, Elements of Agricultural Engineering, Standard F	Publishers						
0.	Co., New Delhi, 2010.							

Course Code	Course Title	L	Т	Ρ	J	С	
22AGT402	SOIL AND WATER CONSERVATION ENGINEERING	3	0	0	0	3	
Pre-requisite		Syllabus version			v. ′	v. 1.0	

- 1. Get a sound knowledge in the problems associated with soil erosion.
- 2. Introduce the estimation of soil erosion.
- 3. Impart knowledge in various practices to control erosion.
- 4. Study about the water conservation principles and techniques.
- 5. Get an idea about sedimentation and its control measures.

Course Outcome:
On completion of the course, the student is expected to

- 1. Gain fundamental knowledge on the concepts of erosion and sedimentation.
- 2. Gain knowledge about evolution of Universal Soil Loss Equation: and its applications.
- 3. Explain and design erosion control measures types and design specifications
- 4. Have sufficient knowledge on soil and water conservation measures.
- 5. Have sufficient knowledge on reservoir sedimentation and sediment control methods.

Unit-1

SOIL EROSION PRINCIPLES

9 hours

Approaches to soil conservation – Soil conservation in India - Erosion – Agents - Causes -Mechanics of water erosion – Soil erosion problems - Types of water erosion: Raindrop erosion, Sheet erosion, Rill erosion, Gully erosion, Stream bank erosion – Classification of Gully – Gully Control Structures: Drop Spillway, Drop Inlet, Chute Spillways - Prerequisites for soil and water conservation measures.

Unit-2

ESTIMATION OF SOIL EROSION

9 hours

Runoff computation for soil conservation: SCS-CN method – Evolution of Universal Soil Loss Equation: Applications and Limitations – Modified Universal Soil Loss Equation – Revised Universal Soil Loss Equation- Permissible erosion – Land use capability classification - Classification of eroded soils.

Unit-3

EROSION CONTROL MEASURES

9 hours

Agronomic practices: contour cultivation - strip cropping – tillage practices – Soil management practices – Bunding: Types and design specifications - Mechanical measures for hill slopes – Terracing: Classification and design specification of bench terrace – Grassed waterways: Location, construction and maintenance – Types of temporary and permanent gully control structures.

Unit-4

WATER CONSERVATION MEASURES

9 hours

In-situ soil moisture conservation – Water harvesting principles and techniques: Micro catchments, catchment yield using morphometric analysis - Farm ponds: Components, Design, Construction and Protection – Check dams - Earthen dam – Retaining wall.

Unit-5

SEDIMENTATION

9 hours

Sediment: Sources – Types of sediment load – Mechanics of sediment transport – Estimation of bed load – Sediment Graph - Reservoir sedimentation: Basics - Factors affecting sediment distribution pattern, Rates of reservoir sedimentation - Silt Detention Tanks – sediment control methods.

Total Lecture hours: 45 hours

Text E	Book(s)				
1	Suresh, R., "Soil and Water Conservation Engineering", Standard Publication, New				
1.	Delhi, 2007.				
2	Ghanshyam Das, "Hydrology and Soil Conservation Engineering", Prentice Hall of				
۷.	India Private Limited, New Delhi, 2000.				
2	"Sedimentation Engineering", 2006, ASCE manual and Report on Engineering				
5.	Practice No. 54, Edited by Vito A. Vanoni. ASCE publishing.				
Refer	Reference Books				
1	Murthy, V.V.N., "Land and Water Management Engineering", Kalyani Publishers,				
1.	Ludhiana, 1998.				
2	Gurmail Singh, "A Manual on Soil and Water Conservation", ICAR Publication, New				
۷.	Delhi, 1982.				
3	Mal, B.C., "Introduction to Soil and Water Conservation Engineering", Kalyani				
5.	Publishers, New Delhi, 2002				

Course Code	Course Title	L	Т	Ρ	J	С
22AGT403	STRENGTH OF MATERIALS FOR AGRICULTURAL ENGINEERING	3	0	0	0	3
Pre-requisite		Syllabus version		v. ´	1.0	

Course Objectives:

To understand the stresses developed in bars, compound, bars, beams, shafts, cylinders and spheres.

Course Outcome:

- 1. Find the stress distribution and strains in regular and composite structures subjected to axial loads.
- 2. Evaluate the stresses in plane trusses.
- 3. Assess the shear force, bending moment and bending stresses in beams.
- 4. Apply torsion equation in design of circular shafts and helical springs.
- 5. Evaluate the slope and deflection of beams and buckling loads of columns under different.

Unit-1	STRESS, STRAIN AND DEFORMATION OF SOLIDS	9 hours
Rigid bo	dies and deformable solids – Tension, Compression and Shear	Stresses –
Deformat	ion of simple and compound bars – Thermal stresses – Elastic c	constants -
Volumetr	ic strains – Thin shells - circumferential and longitudinal stresses in th	in cylinders
- deforma	tion of thin cylinder – stresses in spherical shells – Deformation of sphe	erical shells.

Unit-2	ANALYSIS OF PLANE TRUSSES	9 hours				
Determi	nate and indeterminate plane trusses – determination of member forces	by method				
of joints	of joints, method of sections and method of tension coefficient.					
Unit-3	TRANSVERSE LOADING AND STRESSES IN BEAM	9 hours				
Beams	 types transverse loading on beams – Shear force and bending momentary 	nt in beams				
 Canti 	evers – Simply supported beams and over-hanging beams. Theory	/ of simple				
bending	– bending stress distribution – Shear stress distribution - Flitched beams	s – carriage				
springs.						
	700000					
Unit-4	TORSION	9 hours				
Torsion	formula - stresses and deformation in circular and hollows shafts – Step	ped shafts-				
Deflecti	on in shafts fixed at the both ends – Stresses in helical springs – Deflection	on of helical				
springs	- carriage springs.					
Unit-5	DEFLECTION OF BEAMS	9 hours				
Comput	ation of slopes and deflections in determinate beams - Double Integrat	ion method				
– Maca	Ilay"s method – Area moment method – Conjugate beam method.					
Total Le	cture hours:	45 hours				
Text Bo	ok(s)					
1. 6	Bansal, R.K., "Strength of Materials", Laxmi Publications (P) Ltd., 2007					
2.	lindal U.C., "Strength of Materials", Asian Books Pvt. Ltd., New Delhi, 24	007				
Referen	ce Books					
1. <mark>1</mark>	1. Egor. P.Popov "Engineering Mechanics of Solids" Prentice Hall of India, New Delhi, 2001					
2. <mark>1</mark>	2. Subramanian R., "Strength of Materials", Oxford University Press, Oxford Higher Education Series,2007.					
3. <mark> </mark>	Hibbeler, R.C., "Mechanics of Materials", Pearson Education, Low Price Edition, 2007					
4.	Ferdinand P. Been, Russell Johnson, Jr. and John J. Dewole "Me Materials", Tata McGraw Hill Publishing "co. Ltd., New Delhi, 2005.	echanics of				

Course Code	Course Title	L	Т	Ρ	J	С
22AGT404	HYDROLOGY AND WATER RESOURCES ENGINEERING	3	0	0	0	3
Pre-requisite		Syllabus version		v. ′	1.0	

Course Objectives:

- 1. To introduce to the students, the concepts of hydrological processes, hydrological extremes and groundwater.
- 2. To prepare the students to quantify, regulate and manage water resources.

Course Outcome:

On completion of the course, the student is expected to

1. Define the hydrological processes and their integrated behaviour in catchments

2. Apply the knowledge of hydrological processes to address basin characteristics, runoff and hydrograph

3. Explain the concept of hydrological extremes and its management strategies

4. Describe the principles of storage reservoirs

5. Understand and apply the concepts of groundwater management

Unit-1

PRECIPITATION AND ABSTRACTIONS

9 hours

Hydrological cycle - Meteorological measurements – Types and forms of precipitation – Rain gauges - Spatial analysis of rainfall data using Thiessen polygon and Iso-hyetal methods - Interception – Evaporation: Measurement, Evaporation suppression methods – Infiltration:Horton's equation - Double ring infiltrometer - Infiltration indices.

Unit-2

RUNOFF

9 hours

Catchment: Definition, Morphological characteristics - Factors affecting runoff - Run off estimation using Strange's table and empirical methods - SCS-CN method – Stage discharge relationship - Flow measurements - Hydrograph – Unit Hydrograph – IUH.

Unit-3

HYDROLOGICAL EXTREMES

9 hours

Natural Disasters - Frequency analysis - Flood estimation - Flood management - Definitions of drought: Meteorological, Hydrological, Agricultural and Integrated - IMD method - NDVI analysis - Drought Prone Area Programme (DPAP).

Unit-4

RESERVOIRS

9 hours

Classification of reservoirs - Site selection - General principles of design - Spillways – Elevation Area-Capacity curve – Storage estimation – Sedimentation – Life of reservoirs – Rule curve.

Unit-5

GROUNDWATER AND MANAGEMENT

9 hours

Origin - Classification and types - Properties of aquifers - Governing equations – Steady and unsteady flow - Artificial recharge - RWH in rural and urban areas.

Total Lecture hours: 45 hours

Text I	Text Book(s)						
1.	Subramanya K, "Engineering Hydrology"- Tata McGraw Hill, 2010						
2.	Jayarami Reddy P, "Hydrology", Tata McGraw Hill, 2008.						
Reference Books							
1.	David Keith Todd. "Groundwater Hydrology", John Wiley & Sons, Inc. 2007						
2.	Ven Te Chow, Maidment, D.R. and Mays, L.W. "Applied Hydrology", McGraw Hill International Book Company, 1998.						
3.	Raghunath. H.M., "Hydrology", Wiley Eastern Ltd., 1998.						
4.	Bhagu R. Chahar, Groundwater Hydrology, McGraw Hill Education (India) Pvt Ltd, New Delhi, 2017.						

Cours	se Code	Course Title	L	Т	Ρ	J	С
22A	GT405	ENGINEERING THERMODYNAMICS	3	0	0	0	3
Pre-r	eauisite		Syllabus		us	v. 1	0.1
	- 1		ve	rsic	n		
0							
Cours		ves:					
1.	Impart k	nowledge on the basics and application of zeroth	and		irst	law	of
0	thermody	mamics.				4	- ما
۷.	nerforma	nowledge on the second law of thermodynamics	in a	ana	aiyzii	ng t	ne
3	Impart kr	nee of thermal devices.	f the	erm	odv	nam	ics
4.	Teach th	e various properties of steam through steam tables and	Moll	ier	chai	rt.	100
5.	Impart kr	owledge on the macroscopic properties of ideal and real	l da	ses	5.	••	
			3				
Cours	e Outcom	ne:					
On co	mpletion o	f the course, the student is expected to					
1.	Apply the	e zeroth and first law of thermodynamics by formulating te	emp	era	ture	scal	es
	and calcu	lating the property changes in closed and open enginee	ring	sy	sten	าร.	
2.	Apply the	e second law of thermodynamics in analyzing the perfor	mar	nce	of t	hern	nal
	devices t	hrough energy and entropy calculations.					
3.	Apply the	e second law of thermodynamics in evaluating the vari	ious	s pr	ope	rties	of
	steam th	rough steam tables and Mollier chart					
4.	Apply the	e properties of pure substance in computing the macrosc	copi	ср	rope	rties	of
	ideal and real gases using gas laws and appropriate thermodynamic relations.						
5.	5. Apply the properties of gas mixtures in calculating the properties of gas mixtures and						nd
	applying	various thermodynamic relations to calculate property ch	nang	jes	•		
Unit-1		BASICS, ZEROTH AND FIRST LAW			9 h	ours	\$

Review of Basics – Thermodynamic systems, Properties and processes Thermodynamic Equilibrium - Displacement work - P-V diagram. Thermal equilibrium - Zeroth law – Concept of temperature and Temperature Scales. First law – application to closed and open systems – steady and unsteady flow processes.

SECOND LAW AND ENTROPY

9 hours

Heat Engine – Refrigerator - Heat pump. Statements of second law and their equivalence & corollaries. Carnot cycle - Reversed Carnot cycle - Performance - Clausius inequality. Concept of entropy - T-s diagram - Tds Equations - Entropy change for a pure substance.

Unit-3

Unit-2

AVAILABILITY AND APPLICATIONS OF II LAW

9 hours

Ideal gases undergoing different processes - principle of increase in entropy. Applications of II Law. High and low grade energy. Availability and Irreversibility for open and closed system processes - I and II law Efficiency

Unit-4

PROPERTIES OF PURE SUBSTANCES

9 hours

Steam - formation and its thermodynamic properties - p-v, p-T, T-v, T-s, h-s diagrams. PVT surface. Determination of dryness fraction. Calculation of work done and heat transfer in non-flow and flow processes using Steam Table and Mollier Chart.

Unit-5 GAS MIXTURES AND THERMODYNAMIC RELATIONS

9 hours

Properties of Ideal gas, real gas - comparison. Equations of state for ideal and real gases. Vander Waal's relation - Reduced properties - Compressibility factor - Principle of Corresponding states - Generalized Compressibility Chart. Maxwell relations - TdS Equations - heat capacities relations - Energy equation, Joule-Thomson experiment -Clausius-Clapeyron equation.

Total Lecture hours: 45 hours

Text Book(s)

1.	Nag.P.K., "Engineering Thermodynamics", 6th Edition, Tata McGraw Hill (2017),					
	New Delhi.					
2.	Natarajan, E., "Engineering Thermodynamics: Fundamentals and Applications", 2nd					
	Edition (2014), Anuragam Publications, Chennai					
Reference Books						
1	Cengel, Y and M. Boles, Thermodynamics - An Engineering Approach, Tata					
1.	McGraw Hill,9th Edition, 2019.					
2	Chattopadhyay, P, "Engineering Thermodynamics", 2nd Edition Oxford University					
Ζ.	Press, 2016.					
2	Rathakrishnan, E., "Fundamentals of Engineering Thermodynamics", 2nd Edition,					
<u>ა</u> .	Prentice Hall of India Pvt. Ltd, 2006.					

4.	Claus Borgnakke and Richard E. Sonntag, "Fundamentals of Thermodynamics", 10 th Edition, Wiley Eastern, 2019.
5.	Venkatesh. A, "Basic Engineering Thermodynamics", Universities Press (India) Limited, 2007.

Course Code	Course Title	L	Т	Ρ	J	С
22BST401	ENVIRONMENTAL SCIENCES AND SUSTAINABILITY	2	0	0	0	2
Pre-requisite		Syllabus version		v. ´	1.0	

		0 houro
Unit-1		9 nours
Definition	n, scope and importance of environment – need for public awareness. E	co-system
and Ene	rgy flow- ecological succession. Types of biodiversity: genetic, sp	becies and
ecosyster	m diversity– values of biodiversity, India as a mega-diversity nation – h	ot-spots of
biodivers	ity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildli	fe conflicts
- endang	pered and endemic species of India - conservation of biodiversity: In-s	itu and ex-
situ.		

Unit-2

ENVIRONMENTAL POLLUTION

9 hours

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. Solid, Hazardous and E-Waste management. Case studies on Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

Unit-3

RENEWABLE SOURCES OF ENERGY

9 hours

Energy management and conservation, New Energy Sources: Need of new sources. Different types new energy sources. Applications of- Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

Unit-4	SUSTAINABILITY AND MANAGEMENT	9 hours

Development, GDP, Sustainability- concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and Protocols-Sustainable Development Goals-targets, indicators and intervention areas Climate change- Global, Regional and local environmental issues and possible solutions-case studies. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry-A case study.

Unit-5

SUSTAINABILITY PRACTICES

9 hours

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment, Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports. Sustainable energy: Non-conventional Sources, Energy Cyclescarbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization- Socioeconomical and technological change..

Total Lecture hours: 45 hours

Text E	Book(s)
1	Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 6th
١.	Edition, New Age International Publishers ,2018.
2	Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New
۷.	Delhi, 2016.
2	Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd
З.	edition, Pearson Education, 2004.
٨	Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and
4.	Case Studies, Prentice Hall.
5.	Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable
	design and development, Cengage learning.
6	Environment Impact Assessment Guidelines, Notification of Government of India,
0.	2006.
7	Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis
7.	Publication, London, 1998.
Refer	ence Books
1	R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances
1.	and Standards', Vol. I and II, Enviro Media. 38. edition 2010.
2	Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico
۷.	Publ., House, Mumbai, 2001.
2	Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT. LTD, New
З.	Delhi, 2007.
1	Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University
4.	Press, Third Edition, 2015.
Б	Erach Bharucha "Textbook of Environmental Studies for Undergraduate Courses"
ວ.	Orient Blackswan Pvt. Ltd. 2013.

Course Code	Course Title	L	Τ	Ρ	J	С
22AGP401	TRACTOR AND FARM ENGINES LABORATORY	0	0	4	0	2
Pre-requisite		Syllabus version		v. 1.0		
Course Objectives:						

- 1. To make the students conversant with the anatomy of farm tractor and farm engines
- 2. To make them understand the working principle of IC engines, clutch, gear box, differential and final drive.

Course Outcome:

On completion of the course, the student is expected to

- 1. Understand the working of tractors, power tillers and their functions.
- 2. Identify and rectify problems in the functioning of tractors and power tillers.
- 3. Summarize the ergonomics of tractors and power tillers

LIST OF EXPERIMENTS:

- 1. Identification and study of different components of diesel engine
- 2. Identification and study of different components of petrol engine
- 3. Method of working of diesel engine with the help of working models
- 4. Method of working of diesel engine with the help of working models
- 5. Dismantling and assembly of diesel engine
- 6. Dismantling and assembly of petrol engine
- 7. Study of clutch components and method of working
- 8. Study of gear box components and method of working
- 9. Study of differential and final drive- components and method of working
- 10. Study of braking system and steering system components and method of working
- 11. Study of hydraulic system and PTO system in a tractor
- Study of electrical system, instruments in the dash board and controls components: dynamo, starting motor, battery, lights, horn, odometer, amperemeter, accelerator, brake, differential lock, PTO lever, hydraulic lever, draft and position control lever.

LIST OF EQUIPMENT REQUIRED

- 1. Working model of diesel engine
- 2. Working model of petrol engine
- 3. Working model of clutch
- 4. Working model of gear box
- 5. Working model of differential
- 6. Working model of final drive
- 7. Working model of brake system
- 8. Working model of steering system9. Condemned tractor
- 10. Condemned diesel engine
- 11. Condemned petrol engine

Total Lecture hours: 60hours

CO-PO MAPPING: TRACTOR AND FARM ENGINES LABORATORY

	PO/PSO	CO1	CO2	CO3	correlation of COs with
PO1	Knowledge of Engineering Sciences	2	3	3	-3
PO2	Problem Analysis	2	1	2	2
PO3	Design/ Development of Solutions	2	2	2	2
PO4	Investigations	1	1	1	1
PO5	Modern Tool Usage	3	3	3	3
PO6	Individual and Team work	1	1	1	1
PO7	Communication	-	-	-	-
PO8	The Engineer and Society	-	-	-	-
PO9	Ethics	-	-	-	-
PO10	Environment and Sustainability	1	1	1	1
PO11	Project Management and Finance	2	2	2	2
PO12	Life Long Learning	1	1	1	1
PSO1	To bring expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill	3	3	3	3
PSO2	To enhance the ability of students to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies.	3	3	3	3
PSO3	To inculcate entrepreneurial skills through strong Industry-Institution linkage.	3	3	3	3

Course Code	Course Title	L	Т	Ρ	J	С
22AGP402	STRENGTH OF MATERIALS LABORATORY	0	0	4	0	2
Pre-requisite		Sy ve	llab ersio	ous on	V. ⁻	1.0

Course Objectives:

1. To expose the students to the testing of different materials under the action of various forces and determination of their characteristics experimentally.

Course Outcome:

On completion of the course, the student is expected to

1. Find the stress distribution and strains in regular and composite structures subjected to axial loads.

2. Assess the shear force, bending moment and bending stresses in beams

3. Apply torsion equation in design of circular shafts and helical springs

LIST OF EXPERIMENTS:

- 1. Tension test on steel rod
- 2. Compression test on wood
- 3. Double shear test on metal
- 4. Torsion test on mild steel rod
- 5. Impact test on metal specimen (Izod and Charpy)
- 6. Hardness test on metals (Rockwell and Brinell Hardness Tests)
- 7. Deflection test on metal beam
- 8. Compression test on helical spring
- 9. Deflection test on carriage spring

LIST OF EQUIPMENT REQUIRED

- 1. UTM of minimum 400 kN capacity
- 2. Torsion testing machine
- 3. Izod impact testing machine
- 4. Hardness testing machine
- 5. Rockwell, Vicker's, Brinnel (any 2)
- 6. Extensometer
- 7. Compressometer
- 8. Dial gauges
- 9. Le Chatelier's apparatus
- 10. Vicat's apparatus

Total Lecture hours: 60hours

CO-PO MAPPING: STRENGTH OF MATERIALS LABORATORY

					correlation
	PO/PSO	CO1	CO2	CO3	of
					COs with
PO1	Knowledge of Engineering Sciences	2	3	3	3
PO2	Problem Analysis	2	1	2	2
PO3	Design/ Development of Solutions	2	2	2	2
PO4	Investigations	1	1	1	1
PO5	Modern Tool Usage	-	-	-	-
PO6	Individual and Team work	1	1	1	1
PO7	Communication	-	-	-	-
PO8	The Engineer and Society	-	-	-	-
PO9	Ethics	-	-	-	-
PO10	Environment and Sustainability	-	-	-	-
PO11	Project Management and Finance	2	2	2	2
PO12	Life Long Learning	1	1	1	1

PSO1	To bring expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill	3	3	3	3
PSO2	To enhance the ability of students to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies.	3	3	3	3
PSO3	To inculcate entrepreneurial skills through strong Industry-Institution linkage.	1	1	1	1

Course Code	Course Title	L	Τ	Ρ	J	С
22EEP401	QUANTITATIVE APTITUDE AND LOGICAL REASONING -1	0	0	2	0	1
Pre-requisite		Sy ve	llab ersio	ous on	V	. 1.0

COURSE OBJECTIVES:

1. This module would train the students on the quick ways to solve quantitative aptitude problems

and questions applying logical reasoning, within a short time span given during the placement drives.

COURSE OUTCOME:

Upon the completion of this course, the students will be able to;

- CO1: Demonstrate the various Mock interviews on one-on-one basis.
- CO2: Analyze and Identify Quantitative aptitude.
- CO3: Analyze and Identify Logical Reasoning.

LIST OF EXPERIMENTS:

- 1. Mock interviews on one-on-one basis
- 2. Quantitative aptitude
- 3. Partnership
- 4. Simple Interest, Compound Interest
- 5. Profit and Loss
- 6. Problems on Clock, Calendar and Cubes
- 7. Permutation and Combination
- 8. Allegation and mixtures
- 9. Logical Reasoning
- 10. Letter and Symbol series
- 11. Number series
- 12. Analyzing arguments

13. Making judgments

Total Lecture hours: 30 hours

SEMESTER-V

Course Code	Course Title	L	Т	Ρ	J	С
22AGT501	FARM EQUIPMENT AND MACHINERY	3	0	0	0	3
Pre-requisite		Sy	lab	us	v. ć	1.0
		ve	rsic	n		
Course Object	tives:					
1. To intr	1. To introduce the students to the working principles of farm equipments, tillage					
implem	ents		_			
2. To ex	pose the students to farm mechanization benefits	and	d d	cons	trair	ıts,
identific	ation of components of primary and secondary tillage imp	blem	ent	S		
Course Outco	me:					
To und	erstand the basics of mechanizing a farm.					
 To und 	erstand the components of various tillage equipment.					
To stuce	y about different sowing and fertilizing attachments and s	tand	-alo	one	units	; .
To stuce	y about weeder attachments and sprayers.					
To stuce	y about combine harvester-thresher for various crops					
Unit-1 FAR	M MECHANIZATION			9 h	ours	3
Farm mechar	isation – objectives. Tillage - objectives - methods	– r	orim	nary	tilla	ige
implements - s	econdary tillage implements - animal drawn ploughs - con	stru	ctio	n. T	ypes	s of
farm implemer	ts – trailed, mounted. Field capacity - forces acting on tilla	age t	ool	•		
Unit-2 PRI	IARY AND SECONDARY TILLAGE IMPLEMENTS			9 h	ours	3
Mould board p	lough- attachments – mould board shapes and types. D	isc	olou	ıgh ·	– fo	rce
representation	on disc - Types of disc ploughs - Subsoiler plough	- F	Rota	ary p	olou	gh.
Cultivators - ty	pes - construction. Disc harrows - Bund former - ridger – le	evelle	er. E	Basii	n list	er-
Wetland prepa	ration implements.					
Unit-3 SOV	ING AND FERTILIZING EQUIPMENT			9 h	ours	3
Crop planting ·	Crop planting - methods - row crop planting systems - Devices for metering seeds - furrow					
openers – furr	openers - furrow closers- types - Types of seed drills and planters - calibration-fertilizer					
metering devic	metering devices - seed cum fertilizer drills – paddy transplanters – nursery tray machines.					
Unit-4 WE	DING AND PLANT PROTECTION EQUIPMENT			9 h	ours	\$

Weeding equipment – hand hoe – long handled weeding tools – dryland star weeder – wetland conoweeder and rotary weeder – Engine operated and tractor weeders. Sprayers –types-classification – methods of atomization, spray application rate, droplet size determination – volume median diameter, numerical median diameter – drift control

Unit-5 HARVESTING MACHINERY

9 hours

Principles of cutting crop, types of harvesting machinery, vertical conveyor reaper and binder combine harvesters, balers, threshers, tractor on top combine harvester, combine losses

Total Lecture hours: 45 hours

Text Book(s)

1	Jagdishwar Sahay. Elements of Agricultural Engineering. Standard Publishers			
1.	Distributors, Delhi 6.,2010			
2.	Michael and Ohja. Principles of Agricultural Engineering. Jain brothers, New Delhi.,			
	2005			
Reference Books				
1	Kepner, R.A., et al. Principles of farm machinery. CBS Publishers and Distributers,			
	Delhi. 99, 1997.			
2	Harris Pearson Smith et al. Farm machinery and equipment. Tata McGraw-Hill pub.,			
2.	New Delhi.,1996			
3.	Srivastava, A.C. Elements of Farm Machinery. Oxford and IBH Pub. Co., New Delhi,			
	1990.			

Course Code	Course Title	L	Т	Ρ	J	С
22AGP501	FARM MACHINERY LABORATORY	0	0	4	0	2
Pre-requisite		Sy ve	llab ersio	ous on	v. ′	1.0

Course Objective:

 The students will be introduced to the practice of different farm machinery in the field on tillage, sowing, plant protection, harvesting and threshing; care and maintenance; lubrication; fits and tolerances and replacements; adjustments of farm machines; dismantling and reassembling of a disc harrow, seed-cum fertilizer drill and sprayer, engine pumps

Course Outcome:

- To identify major systems in a tractor and general guidelines on preliminary check • measures before starting a tractor.
- To have knowledge of the field operations and management of tillage implements.
- To have knowledge of the field operations and management of seeder devices and plant protection equipment.
- To have knowledge of the field operations and management of harvesters, threshers and combines.
- To have knowledge of the field operations and management of heavy earth moving machinery.

LIST OF EXPERIMENTS:

- 1. Identification of major systems of a tractor and general guidelines on preliminary check measures before starting a tractor - procedure for starting, running and stopping the tractor.
- 2. Identification of components of power tiller, their maintenance and study on preliminary check measures and safety aspects before starting a power tiller procedure for starting, running and stopping the power tiller.
- 3. Field operation and adjustments of ploughs
- 4. Field operation and adjustments of harrows
- 5. Field operation and adjustments of cultivators
- 6. Field operation of sowing and planting equipment and their adjustments
- 7. Field operation of plant protection equipment
- 8. Field operation on mowers and reapers
- 9. Field operation of combine and determination of field losses
- 10. Field operation of threshers and their performance evaluation
- 11. Studies on methods of repair, maintenance and off-season storage of farm equipment
- 12. Opening and reassembly of disc harrows, determination and adjustment of tilt and disc angles
- 13. Hitching of agricultural implements and trailers
- 14. Study and operation of bulldozer
- 15. Visit to agro-manufacturers

Text Book(s)

1.	Jain, S.C. and C.R. Rai. Farm Tractor Maintenance and Repair. Standard publishers and Distributors, New Delhi, 1999.
2.	Herbert L.Nichols Sr., Moving the Earth, D. Van Nostrand company Inc. Princeton, 1959.
REFE	

1.	John A Havers and Frank W Stubbs, Hand book of Heavy Construction, McGraw – Hill book Company, New York, 1971
2.	Barger, E.L., J.B. Liljedahl and E.C. McKibben, Tractors and their Power Units. Wiley Eastern Pvt. Ltd., New Delhi, 1997.
	Total Lecture hours: 60hours

Course Code	Course Title	L	Т	Ρ	J	С
22AGP502	ICT IN AGRICULTURAL ENGINEERING LABORATORY	0	0	2	0	1
Pre-requisite		Sy ve	llab ersio	v. ′	1.0	

Course Objective:

1. To gain practical knowledge on various technologies in information and communication for agriculture.

Course Outcome:

- Knowledge on meteorological measurements
- Obtain knowledge on triggering an agricultural system
- Knowledge on Image processing as tool for biotic and abiotic stress identification
- Ability to conduct spatial analysis of rainfall data and design water storage reservoirs.

LIST OF EXPERIMENTS:

1. Configuring timers for automatic switching "on and off" of irrigation systems

- 2. Experience with solenoid valves for pressurized irrigation
- 3. Using sensors for Agro meteorological measurements
- 4. Employing Printed Circuit Board (PCB) or Breadboard for controlling or triggering an agricultural system
- 5. Use of mobile apps for controlling or triggering an agricultural system
- 6. Construction of crop growth functions (best fit) for crop yields simulations
- 7. Image processing as tool for biotic and abiotic stress identification
- 8. Experience with existing open source crop simulation models
- 9. Exposing cloud resources for agricultural applications
- 10. Developing automated agro advisory systems

Total Lecture hours: 60hours

Course Code	Course Title	L	Т	Ρ	J	С
22AGP503	CAD FOR AGRICULTURE MACHINERY LABORATORY	0	0	4	0	2

Course Objective: 1. To draft the agricultural engineering related machineries and structures m and also by computer aided methods Course Outcome: • Understand the plan and layout of underground pipes, post harvesting un check dams • Design and draw the components using computer aided methods LIST OF EXPERIMENTS: 1. Design and Drawing of Underground pipeline system 2. Design and Drawing of Check dam 3. Design and Drawing of Mould board plough 4. Design and Drawing of Disk plough 5. Design and Drawing of Biogas plant. 7. Introduction & demonstration on 3D modeling softwares like Pro/E, Creat works, Solid Edge etc. Text Book(s) 1. Vijay Duggal. "A general guide to Computer Aided Design & Drafting, M Publications, 2000 2. Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butter Heinemann Publications, 2006 3. Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 REFERENCE BOOKS 1. Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 2. Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999	v. 1.0	Syllabus version			e-requisite	Pre-r
 To draft the agricultural engineering related machineries and structures m and also by computer aided methods Course Outcome: Understand the plan and layout of underground pipes, post harvesting un check dams Design and draw the components using computer aided methods LIST OF EXPERIMENTS: Design and Drawing of Underground pipeline system Design and Drawing of Check dam Design and Drawing of Check dam Design and Drawing of Mould board plough Design and Drawing of Post-harvest technology units (threshers and winnow Design and Drawing of Biogas plant. Introduction & demonstration on 3D modeling softwares like Pro/E, Crect works, Solid Edge etc. Text Book(s) Vijay Duggal. "A general guide to Computer Aided Design & Drafting, M Publications, 2000 Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butter Heinemann Publications, 2006 Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 REFERENCE BOOKS Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999 					rse Objecti	Cours
Course Outcome: • Understand the plan and layout of underground pipes, post harvesting un check dams • Design and draw the components using computer aided methods LIST OF EXPERIMENTS: 1. Design and Drawing of Underground pipeline system 2. Design and Drawing of Check dam 3. Design and Drawing of Mould board plough 4. Design and Drawing of Post-harvest technology units (threshers and winnow 6. Design and Drawing of Biogas plant. 7. Introduction & demonstration on 3D modeling softwares like Pro/E, Creat works, Solid Edge etc. Text Book(s) 1. Vijay Duggal. "A general guide to Computer Aided Design & Drafting, M Publications, 2000 2. Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butter Heinemann Publications, 2006 3. Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 REFERENCE BOOKS 1. Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 2. Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999	anually	ructures ma	hineries and st	agricultural engineering related ma computer aided methods	 To draft and also 	1.
 Understand the plan and layout of underground pipes, post harvesting uncheck dams Design and draw the components using computer aided methods LIST OF EXPERIMENTS: Design and Drawing of Underground pipeline system Design and Drawing of Check dam Design and Drawing of Mould board plough Design and Drawing of Post-harvest technology units (threshers and winnow Design and Drawing of Post-harvest technology units (threshers and winnow Design and Drawing of Biogas plant. Introduction & demonstration on 3D modeling softwares like Pro/E, Creatworks, Solid Edge etc. Text Book(s) Vijay Duggal. "A general guide to Computer Aided Design & Drafting, M Publications, 2000 Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butter Heinemann Publications, 2006 Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 Reference Books Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999 					rse Outcom	Cours
 check dams Design and draw the components using computer aided methods LIST OF EXPERIMENTS: Design and Drawing of Underground pipeline system Design and Drawing of Check dam Design and Drawing of Mould board plough Design and Drawing of Disk plough Design and Drawing of Post-harvest technology units (threshers and winnow Design and Drawing of Biogas plant. Introduction & demonstration on 3D modeling softwares like Pro/E, Crect works, Solid Edge etc. Text Book(s) Vijay Duggal. "A general guide to Computer Aided Design & Drafting, M Publications, 2000 Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butter Heinemann Publications, 2006 Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 REFERENCE BOOKS Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999 	its and	rvesting uni	pipes, post har	the plan and layout of underground	Understa	٠
 Design and draw the components using computer aided methods LIST OF EXPERIMENTS: Design and Drawing of Underground pipeline system Design and Drawing of Check dam Design and Drawing of Mould board plough Design and Drawing of Disk plough Design and Drawing of Post-harvest technology units (threshers and winnow Design and Drawing of Biogas plant. Introduction & demonstration on 3D modeling softwares like Pro/E, Crect works, Solid Edge etc. Text Book(s) Vijay Duggal. "A general guide to Computer Aided Design & Drafting, M Publications, 2000 Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butter Heinemann Publications, 2006 Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 Reference Books Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999 					check da	
LIST OF EXPERIMENTS: 1. Design and Drawing of Underground pipeline system 2. Design and Drawing of Check dam 3. Design and Drawing of Mould board plough 4. Design and Drawing of Disk plough 5. Design and Drawing of Post-harvest technology units (threshers and winnow 6. Design and Drawing of Biogas plant. 7. Introduction & demonstration on 3D modeling softwares like Pro/E, Crece works, Solid Edge etc. Text Book(s) 1. Vijay Duggal. "A general guide to Computer Aided Design & Drafting, M Publications, 2000 2. Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Buttee Heinemann Publications, 2006 3. Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 REFERENCE BOOKS 1. Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 2. Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999		3	aided methods	draw the components using compute	 Design a 	•
 Design and Drawing of Underground pipeline system Design and Drawing of Check dam Design and Drawing of Mould board plough Design and Drawing of Disk plough Design and Drawing of Post-harvest technology units (threshers and winnow Design and Drawing of Biogas plant. Introduction & demonstration on 3D modeling softwares like Pro/E, Crece works, Solid Edge etc. Text Book(s) Vijay Duggal. "A general guide to Computer Aided Design & Drafting, M Publications, 2000 Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butte Heinemann Publications, 2006 Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 REFERENCE BOOKS Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999 				ENTS:		LIST
 Design and Drawing of Check dam Design and Drawing of Mould board plough Design and Drawing of Disk plough Design and Drawing of Post-harvest technology units (threshers and winnow Design and Drawing of Biogas plant. Introduction & demonstration on 3D modeling softwares like Pro/E, Crece works, Solid Edge etc. Text Book(s) Vijay Duggal. "A general guide to Computer Aided Design & Drafting, M Publications, 2000 Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butter Heinemann Publications, 2006 Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 Reference Books Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999 			tem	Drawing of Underground pipeline sys	1. Design a	1.
 Design and Drawing of Mould board plough Design and Drawing of Disk plough Design and Drawing of Post-harvest technology units (threshers and winnow Design and Drawing of Biogas plant. Introduction & demonstration on 3D modeling softwares like Pro/E, Crece works, Solid Edge etc. Text Book(s) Vijay Duggal. "A general guide to Computer Aided Design & Drafting, M Publications, 2000 Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butter Heinemann Publications, 2006 Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 Reference BOOKS Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999 				Drawing of Check dam	2. Design a	2.
 Design and Drawing of Disk plougn Design and Drawing of Post-harvest technology units (threshers and winnow Design and Drawing of Biogas plant. Introduction & demonstration on 3D modeling softwares like Pro/E, Creck works, Solid Edge etc. Text Book(s) Vijay Duggal. "A general guide to Computer Aided Design & Drafting, M Publications, 2000 Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butte Heinemann Publications, 2006 Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 Rei, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999 				Drawing of Mould board plough	 Design a 	3.
 Design and Drawing of Post-harvest technology units (threshers and winnow Design and Drawing of Biogas plant. Introduction & demonstration on 3D modeling softwares like Pro/E, Creck works, Solid Edge etc. Text Book(s) Vijay Duggal. "A general guide to Computer Aided Design & Drafting, M Publications, 2000 Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butte Heinemann Publications, 2006 Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 Reference Books Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999 		and winnow	nita (thrachara a	Drawing of Disk plough	 Design a Design a 	4. 5
 Design and Drawing of Diogas plant. Introduction & demonstration on 3D modeling softwares like Pro/E, Creck works, Solid Edge etc. Text Book(s) Vijay Duggal. "A general guide to Computer Aided Design & Drafting, M Publications, 2000 Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butte Heinemann Publications, 2006 Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 Reference Books Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999 	vers)			Drawing of Biogas plant	D. Design a	5. 6
 Introduction & demonstration on SD modeling softwares into Pro/E, Orectworks, Solid Edge etc. Text Book(s) Vijay Duggal. "A general guide to Computer Aided Design & Drafting, M Publications, 2000 Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butter Heinemann Publications, 2006 Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 REFERENCE BOOKS Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999 	s Solic	Pro/E Creo	oftwares like P	& demonstration on 3D modeling	7 Introduct	0. 7
Text Book(s) 1. Vijay Duggal. "A general guide to Computer Aided Design & Drafting, N Publications, 2000 2. Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butte Heinemann Publications, 2006 3. Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 REFERENCE BOOKS 1. Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 2. Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999	, 30110		Softwares like i	Edge etc.	works. Se	7.
 Vijay Duggal. "A general guide to Computer Aided Design & Drafting, N Publications, 2000 Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butter Heinemann Publications, 2006 Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 REFERENCE BOOKS Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999 					Book(s)	Text E
 2. Tadeusz Stolarski et al. "Engineering Analysis with ANSYS Software", Butter Heinemann Publications, 2006 3. Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 REFERENCE BOOKS Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 2. Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999 	lailmax	Drafting, M	ded Design &	al. "A general guide to Computer A , 2000	1. Vijay Du Publicati	1.
 Louis Gary Lamit, "Introduction to Pro/ENGINEER" SDC Publications, 2004 REFERENCE BOOKS Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999 	erworth	ware", Butte	th ANSYS Softv	blarski et al. "Engineering Analysis w Publications, 2006	2. Tadeusz Heinema	2.
REFERENCE BOOKS 1. Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 2. Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999		tions, 2004.	R" SDC Publicat	amit, "Introduction to Pro/ENGINEE	3. Louis Ga	3.
 Rai, G.D. "Nonconventional Sources of Energy", Khanna publishers, New 1995 Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999 				KS		REFE
2. Michael, A.M. "Irrigation Theory and Practice", Vikas Publishing House, New 1999	/ Delhi,	shers, New	, Khanna publis	Nonconventional Sources of Energy	1. Rai, G.E 1995	1.
	v Delhi,	House, New	kas Publishing F	<i>I</i> . "Irrigation Theory and Practice", V	2. Michael, 1999	2.
3. Srivastava, A.C."Elements of Farm Machinery", Oxford and IBH Publication New Delhi, 1990.	ns Co.,	I Publicatior	Oxford and IBH	A.C."Elements of Farm Machinery", 1990.	3. Srivasta New Del	3.
Total Lecture hours: 60h	nours	ours: 60h	otal Lecture h		I	

Course Code	Course Title	L	Т	Ρ	J	С
22AGP504	INDUSTRIAL ATTACHMENT /INTERNSHIP (3 WEEKS DURING IV SEMESTER –SUMMER)	0	0	0	0	1
Pre-requisite		Sy ve	llab rsio	v. ′	1.0	

Course Objective:

- 1. To train the students in field work by attaching to any industry / organization so as to have a firsthand knowledge of practical problems in Agricultural Engineering
- 2. To gain working experience and skills in carrying out engineering tasks related to various fields of agriculture.

Course Outcome:

- Gain practical knowledge by attaching themselves to the industry.
- Gain Hands on experience and skills in their specialization.
- To work efficiently as a team.
- To execute the theoretical concepts experimentally in field.
- At the completion of the training, students will be able to furnish a full report on the work done.

The students individually undertake training in reputed engineering companies / Govt organisations / NGOs / Educational Institutions who work in the area of Agricultural Engineering for the specified duration. The students can go internship 3 weeks on various specialization or in the same specialization. At the end of the training, a report on the work done will be prepared and presented. The students will be evaluated through a viva-voce examination by a team of internal staff.

Total Lecture hours: 60hours

SEMESTER VI

Course Code	Course Title	L	Т	Ρ	J	С	
22AGT601	POST- HARVEST TECHNOLOGY	3	0	0	0	3	
Pre-requisite		Syllabus version			v. 1.0		
Course Objecti	ves:						
 The students would be exposed to fundamental knowledge in engineering properties of agricultural materials, different Post Harvest operations and processing methods of harvested crops and storage of crops 							

Course Outcome:

- Understand the importance of post-harvest processing and determine moisture content of products
- Perform drying of agricultural products and analyze performance of dryers
- Recognize the working principles of grain cleaning and grading devices and able to select suitable equipment for cereal grains, oilseeds, and pulses
- Understand the operation of post-harvest equipment like shellers, conveyors
- Different Post Harvest operations and processing methods of harvested crops

Unit-1 FUNDAMENTALS OF POST HARVESTING

Post-harvest technology - introduction -objectives -post harvest losses of cereals, pulses and oilseeds – importance - optimum stage of harvest. Threshing – traditional methods mechanical threshers - types-principles and operation-moisture content -measurement direct and indirect methods - moisture meters - equilibrium moisture content

PSYCHROMETRY AND DRYING Unit-2

Psychrometry – importance – Psychrometric charts and its uses – Drying – principles and theory of drying – thin layer and deep bed drying – Hot air drying – methods of producing hot air – Types of grain dryers – selection – construction, operation and maintenance of dryers – Design of dryers

CLEANING AND GRADING Unit-3

Principles - air screen cleaners - adjustments - cylinder separator - spiral separator magnetic separator - colour sorter - inclined belt separator - length separators effectiveness of separation and performance index.

Unit-4 SHELLING AND HANDLING

Principles and operation – maize sheller, husker sheller for maize – groundnut decorticator castor sheller – material handling – belt conveyor –screw conveyor – chain conveyor – bucket elevators - pneumatic conveying

CROP PROCESSING Unit-5

9 hours

Paddy processing – parboiling of paddy – methods – merits and demerits – dehusking of paddy – methods – merits and demerits – rice polishers –types – constructional details – polishing -layout of modern rice mill - wheat milling - pulse milling methods - oil seed processing – millets processing.

Total Lecture hours: 45 hours

Text Book(s)

Chakraverty, A.Post harvest technology for Cereals, Pulses and oilseeds. Oxford & 1. IBH publication Pvt Ltd, New Delhi, Third Edition, 2000

Curriculum and Syllabus | B.Tech - Agricultural Engineering | R2022 | Page | 91

9 hours

9 hours

9 hours

9 hours

2.	Sahay, K.M., and Singh, K.K. Unit operations of Agricultural Processing. Vikas publishing house Pvt. Ltd., New Delhi, 1994.
Refer	ence Books
1.	Pande, P.H. Principles of Agriculture Processing. Kalyani Publishers, Ludhiana, 1994
2	Henderson, S.M. and R.L. Perry. Agricultural Process Engineering. John Wiley and

Sons, New York. 1955

Course Code	Course Title	L	Т	Ρ	J	С			
22AGT602	IRRIGATION AND DRAINAGE ENGINEERING	3	0	0	0	3			
Pre-requisite		Syllabus version			v. ′	1.0			
Course Ohiosti									

Course Objectives:

- 1. Inculcate water resources development and various parameters required for irrigation scheduling and its requirement
- 2. Understand different kinds of irrigation system and choose appropriate system for a given environment.
- 3. Introduce different types of water control and diversion structures for planning the irrigation system.
- 4. Understand canal, tank irrigation and command area development.
- 5. Understand the basic concepts for planning, design and management of land drainage works in field areas

Course Outcome:

- The students will have knowledge and skills on Planning, design, operation and management of Water Resources and Irrigation Requirement.
- The student will gain knowledge on different methods of irrigation including canal irrigation.
- Obtain knowledge on different types Diversion and Impounding Structures
- Understand the concept Canal Irrigation and Command Area Development
- Understand the concept recycling of drainage water for irrigation

Unit-1 WATER RESOURCES AND IRRIGATION REQUIREMENT 9 hours

Water Resources- River basins-Development and Utilization in India and Tamil Nadu-Irrigation – duty and delta - Rooting characteristics - Moisture use of crop, Evapotranspiration - ET plot - Crop water requirement - Effective rainfall - Scheduling -Irrigation requirement - Irrigation frequency, Irrigation efficiencies.

Unit-2 METHODS OF IRRIGATION

9 hours

Methods of Irrigation – Surface and Subsurface methods – Drip and Sprinkler - Hydraulics and design - Erodible and non-erodible, Kennedy's and Lacey's theories, Materials for lining water courses and field channel, Water control and diversion structure - Underground

pipeline irrigation system

Unit-3 DIVERSION AND IMPOUNDING STRUCTURES

9 hours

Head works –Weirs and Barrage –Types of impounding structures - Factors affecting, location of dams -Forces on a dam -Design of Gravity dams- Earth dams, Arch dams – Spillways -Energy dissipaters.

Unit-4 CANAL IRRIGATION AND COMMAND AREA DEVELOPMENT 9 hours

Classification of canals- Alignment of canals – Design of irrigation canals– Regime theories - Canal Head works – Canal regulators - Canal drops – Cross drainage works – Canal Outlet, Escapes –Lining and maintenance of canals - Excess irrigation and waterlogging problem - Command area - Concept, Components of CADP - On Farm Development works, Farmer's committee - its role for water distribution and system operation - rotational irrigation system.

Unit-5 AGRICULTURAL DRAINAGE

9 hours

Agricultural drainage - Drainage coefficient; principles of flow through soils, Darcy's law – infiltration theory, Surface drainage systems - Subsurface drainage - Design of subsurface drainage - Pipe materials - mole drains, drainage wells, Leaching requirements - irrigation and drainage water quality - recycling of drainage water for irrigation.

Total Lecture hours: 45 hours

Text Book(s)

1.	Dilip Kumar Majumdar., "Irrigation Water Management", Prentice-Hall of India, New Delhi, 2008.					
2.	Michael, A.M., "Irrigation Engineering", Vikas Publishers, New Delhi, 2008.					
3.	Garg, S.K., "Irrigation Engineering," Laxmi Publications, New Delhi, 2008					
4.	Ritzema, H.P., "Drainage Principles and Applications", Publication No. 16, International Institute of Land Reclamation and Improvement, Netherlands, 1994.					
Refer	Reference Books					
1.	Basak, N.N., "Irrigation Engineering", Tata McGraw-Hill Publishing Co, New Delhi, 2008					
2.	Murthy, V.V.N. Land and water management, Kalyani publishing, New Delhi, 1998					
3.	Bhattacharya, A.K., and Michael, A.M., "Land Drainage – Principles, Methods and Applications", Konark Publishers Pvt. Ltd., New Delhi, 2003					
4.	Irrigation water Management, Training Manual No 6, Drainage of Irrigated Lands, Food and Agriculture Organisation, Rome 1996					
5.	Kessler, J., "Drainage Principles and Applications", Vol. II and IV, International					

1

Course Code	Course Title	L	Т	Ρ	J	С
22AGP601	POST – HARVEST TECHNOLOGY LABORATORY	0	0	3	0	1.5
Pre-requisite		Syll	abu sio	IS n	V.	1.0
			510			
Course Objectiv	ves:					
1. Alter the end t	of this lab, students will be able to determine various e	engine	eni	ig p	prop	enties
of grains, test an	id evaluate different post narvesting machineries					
Determine tl	he different engineering properties of biological	mate	erial	s a	and	their
importance						
Determine th	e efficiency of various post-harvest equipment					
	RIMENTS:					
1. Determin	ation of moisture content of grains by oven method a	and m	oist	ure	me	ter.
2. Determin	ation of porosity of grains.					
3. Determin	ation of coefficient of friction and angle of repose of	grains				
4. Testing c	f paddy thresher & paddy winnower.					
5. Testing c	f groundnut decorticator & maize sheller					
6. Evaluatio	n of thin layer drier					
7. Evaluatio	on of L.S.U. drier.					
8. Determin	ing the efficiency of bucket elevator and screw conve	eyor				
9. Evaluatio	n of shelling efficiency of rubber roll sheller					
10. Determin	ing the oil content of oil seeds.					
11. Visit to m	odern rice mill					
12. Visit to p	ulse milling industry					
	Total Lecture	hour	s:	60	hou	rs
Text Book(s)						
1 Chakrave	erty, A. Post harvest technology for Cereals. Pulses	and C	Dilse	eed	s. O	xford
& IBH Pu	blication Pvt Ltd, New Delhi, Third Edition, 2000.					
2. Sahay, K Publishin		al Pro	oce	SSI	ng,	Vikas
	······································					

Refer	ence Books
1.	Pande, P.H. Principles of Agriculture Processing. Kalyani Publishers, Ludhiana, 1994.
2.	Henderson, S.M. and R.L. Perry. Agricultural Process Engineering. John Wiley and Sons, New York. 1955.
3.	Mohsenin, N.N. Physical Properties of Plant and Animal Materials Gordon and Breach Publishers, Ludhiana, 1970.

Course Code	Course Title	L	Т	Ρ	J	С
22AGP602	IRRIGATION FIELD LABORATORY	0	0	3	0	1.5
Pre-requisite		Syllabus version		v.	1.0	

Course Objectives:

1. Students should be able to verify the principles studied in theory by performing the experiments in lab.

Course Outcome:

- On the completion of the course the student will have the knowledge on various meteorological instruments and understanding the concept of different irrigational systems in the laboratory tests
- The student will gain knowledge on infiltrometer
- Obtain knowledge on Drip irrigation system with all accessories
- Obtain knowledge on Sprinkler irrigation system with all accessories

LIST OF EXPERIMENTS:

- 1. To study various instruments in the Meteorological Laboratory
- 2. Determination of infiltration rate using double ring and digital infiltrometer
- 3. Determination of soil moisture wetting pattern for irrigation scheduling
- 4. Design of Drip irrigation system
- 5. Design of sprinkler irrigation system
- 6. Measurement of flow properties in open irrigated channels (flumes, notches)
- 7. Evaluation of surface irrigation
- 8. Determination of uniformity coefficient for drip irrigation system
- 9. Determination of uniformity coefficient for sprinkler system (catch can method)
- 10. To conduct experiment on disc filter for micro irrigation systems

Total Lecture hours: 60hours

Refe	erence Books
1	Michael, A.M., "Irrigation Theory and Practice", Vikas Publishing House, New Delhi,
	1999.
2	Asawa, G.L., "Irrigation Engineering", New Age International Private Limited, New
	Delhi, 1996.
3	Laboratory Manual, Centre for Water Resources, Anna University, Chennai.

SEMESTER VII

Course Code	Course Title	L	Т	Ρ	J	С
22AGT701	REMOTE SENSING AND GEOGRAPHICAL INFORMATION SYSTEM	3	0	0	0	3
Pre-requisite		Syllabus version			v. ´	1.0

Course Objectives:

1. To introduce the principles and basic concepts of Remote Sensing and GIS

2. To introduce the remote sensing systems, data products and analysis

3. To introduce concepts of GIS 9 Map and their influences

4. To introduce the spatial data models, analysis and presentation techniques

5. To study the applications of Remote Sensing and GIS in agriculture, soil and water resources

Course Outcome:

- Understand the remote sensing principles and systems
- Gain sufficient knowledge on satellite data processing and available data products.
- Know the concept of GIS and its tools.
- Have knowledge on data input and analysis techniques.
- Utilize these advanced techniques in addressing the real world problems.

Unit-1 CONCEPTS OF REMOTE SENSING AND SATELLITES

9 hours

Definition- Historical background - Components of remote sensing – Energy source, electromagnetic spectrum, radiation principle, platforms and sensors - Active and passive remote sensing interference - Atmospheric effects on remote sensing – Energy interaction with earth surface feature - Data acquisition - Reflectance, spectral signatures for water, soil and vegetation.- Satellites - Types - Sun synchronous - Geo synchronous remote

sensing satellites - LANDSAT,SPOT & IRS - Resolution - Spectral, spatial, radiometric and Temporal resolution - Recent satellites with its applications

Unit-2 DATA PRODUCTS AND IMAGE ANALYSIS

9 hours

Data products –based on level of processing- o/p – scale – area/coverage – data availability – data ordering- data price - Image interpretation – Visual interpretation elements – interpretation key. Digital image processing – Image enhancement – image classification – Supervised and unsupervised – Vegetation Indices.

Unit-3 CONCEPTS OF GIS

9 hours

9 hours

Definition – Map and their influences – Characteristics of Maps – Elements – Map scale, Projection, Coordinate systems – Sources of spatial data – History and development of GIS – Definition – Components – Hardware and Software

Unit-4 DATA INPUT AND ANALYSIS

Data – Spatial, Non-Spatial – Database models – Hierarchical network, Relational and Object Oriented Data Models – Raster and Vector – Methods of Data input – Data Editing – Files and formats – Data structure – Data compression. Introduction to analysis – Measurements – Queries – Reclassification – Simple spatial analysis – Buffering – Neighboring functions – Map overlay – Vector and raster – Spatial interpolation – Modelling in GIS – Digital Elevation Modelling – Expert systems

Unit-5 APPLICATION OF RS AND GIS

9 hours

Crop Acreage estimation - Estimation of Crop Water Requirement – Crop condition - Soil mapping – classification of soil with digital numbers – soil erosion mapping- reservoir sedimentation using image processing - Inventory of water resources – water quality assessment - Application of Remote Sensing and GIS in Precision Agriculture - Monitor Crop Health - Management Decision Support Systems

Total Lecture hours: 45 hours

Text Book(s)

1.

Anji Reddy. M, Remote Sensing and Geographical Information Systems, BS Publications, Hyderbad, 2001

C	Lillesand, T. M., and Kiefer, R.W., Remote Sensing and Image Interpretation, John
Ζ.	Wiley and Sons, New York, 2000.
Refer	ence Books
	Bettinger, P., and Michael, G.W., "Geographical Information System: Applications in
1.	Forestry and Natural Resources Management," Tata McGraw–Hill Higher Education,
	New Delhi, 2003
2.	2. Ian Heywood., "An Introduction to GIS", Pearson Education, New Delhi, 2001.
3	Jeffery Star and John Estes, "Geographical Information System – An Introduction,"
0.	Prentice Hall India Pvt. Ltd., New Delhi, 1998.
4	Patel A.N & Surendra Singh, "Remote sensing principles & applications", Scientific
т.	Publishers , Jodhpur 1992

Course Code	Course Title	L	Т	Ρ	J	С
22AGT702	RENEWABLE ENERGY IN AGRICULTURAL ENGINEERING	3	0	0	0	3
Pre-requisite		Syllabus version			v. ´	1.0

Course Objectives:

- 1. To impart the fundamental knowledge on the importance of Bio resources, Bio energy and reactors.
- 2. To study Slurry handling
- 3. To study Bio reactors/ fermenters
- 4. To study Alcohol and ethanol production and
- 5. To study Energy and Environment

Course Outcome:

- The students will be able to understand the concepts of bio energy sources and its applications.
- Gain sufficient knowledge on Bioenergy.
- Know the concept of Bioreactors and Fermentors and their working principles.
- Have knowledge on production of alcohol.
- Utilize these advanced techniques in conserving energy and protecting the environment.

Unit-1	BIO RESOURCE – AN INTRODUCTION	9 hours				
Bio resource – origin – biomass types and characteristics- biomass conversion technology						
Biodeg	radation - steps in biogas production- parameters affecting gas production	n- Types of				
biogas	plants- Construction details- operation and maintenance.					
Unit-2	BIO ENERGY	9 hours				
Slurry handling- enrichment and utilization – Biogas appliances- Biochemical characteristics						
of bio r	esources- Bioenergetics –Biocatalysis –Kinetics of product formation					
Unit-3	BIO REACTORS AND FERMENTORS	9 hours				
Bio rea	ctors/ fermentors – Batch type – continuous stirred tank reactors- Biolo	gical waste				
water	treatment- Activated sludge process- Downstream processing-Red	covery and				
purifica	tion of products					
Unit-4	ALCOHOL PRODUCTION	9 hours				
Alcoho	l ethanol production - Acid hydrolysis - enzyme hydrolysis-Methanol	synthesis –				
Antibio	tics enzymes- principles of thermochemical conversion - combustion	- pyrolysis-				
Gasific	ation – types of gasifiers					
Unit-5	ENERGY AND ENVIRONMENT	9 hours				
Princip	les of operation- chemical reaction- cleaning and cooling - Utilization- Imp	roved wood				
burning	g stove - Energy plantations- Biomass briquetting - co generation-	Impact on				
Enviro	nment – – Bioenergy policy.					
	Total Lecture hours:	45 hours				
Text B	ook(s)					
1.	Rai G.D, Non-conventional sources of Energy, Khanna publishers, New I	Delhi, 1995.				
2	Bouley James .E & David Follis - Biochemical Engineering Fundamentals Mc Graw-					
2.	Hill publishing company, Tokyo.1986					
Z. Refere	Hill publishing company, Tokyo.1986 nce Books					
Refere	Hill publishing company, Tokyo.1986 nce Books Chawla O.P, Advances in Biogas Technology ICAR publication New De	lhi 1986				

Course Code	Course Title	L	Τ	Ρ	J	С
22HST701	TOTAL QUALITY MANAGEMENT	3 Sv	0 Ilah	0	0	3
Pre-requisite		Ve	rsic	us on	v. ′	1.0
1. Teach the r	ves: need for quality, its evolution, basic concepts, contribution	on of	au	alitv	aur	us.
TQM frame	work. Barriers and Benefits of TQM.		1-		3	,
2. Explain the	TQM Principles for application					
3. Define the t	pasics of Six Sigma and apply Traditional tools. New to	ols.	Ber	nchn	hark	ina
and FMEA.		,	-	-		3
4. Describe T	aguchi's Quality Loss Function, Performance Mea	asure	s	and	ар	ply
Techniques	like QFD, TPM, COQ and BPR.				•	. ,
5. Illustrate an	5. Illustrate and apply QMS and EMS in any organization					
Course Outcon						
Ability to a	oply TQM concepts in a selected enterprise.					
Ability to a	oply IQM principles in a selected enterprise					
Ability to u	nderstand Six Sigma and apply Traditional tools, New to	ols,				
Benchmark	king and FMEA					
Ability to u	nderstand Taguchi's Quality Loss Function, Performance	e Me	ası	ires	and	
apply QFD	, TPM, COQ and BPR.					
Ability to a	oply QMS and EMS in any organization.					
Unit-1 INTRO	DDUCTION			9 h	ours	
Introduction - No	eed for quality - Evolution of quality - Definition of quality	ity -	Din	nens	ions	; of
product and ser	vice quality – Definition of TQM Basic concepts of TQ	M -	Gur	us c	of TO	λď
(Brief introductio	on) TQM Framework- Barriers to TQM –Benefits of TC	Μ				
Unit-2 TQM	PRINCIPLES			9 h	ours	I
Leadership - D	eming Philosophy, Quality Council, Quality stateme	ents	and	d St	rate	gic
planning Custor	ner Satisfaction –Customer Perception of Quality, Fe	edba	ack,	Cu	ston	ner
complaints, Serv	vice Quality, Kano Model and Customer retention – Emp	oloye	e ir	nvolv	/em	ent
 Motivation, 	Empowerment, Team and Teamwork, Recognition	&	Re	war	d a	Ind
Performance Ap	praisal Continuous process improvement –Juran Trilog	gy, P	DS	А су	cle,	5S

and Kaizen - Supplier partnership – Partnering, Supplier selection, Supplier Rating and Relationship development.

Unit-3 TQM TOOLS & TECHNIQUES I

9 hours

The seven traditional tools of quality - New management tools - Six-sigma Process Capability Bench marking - Reasons to benchmark, Benchmarking process, What to Bench Mark, Understanding Current Performance, Planning, Studying Others, Learning from the data, Using the findings, Pitfalls and Criticisms of Benchmarking - FMEA - Intent, Documentation, Stages: Design FMEA and Process FMEA.

Unit-4 TQM TOOLS & TECHNIQUES II

9 hours

Quality circles – Quality Function Deployment (QFD) - Taguchi quality loss function – TPM – Concepts, improvement needs – Performance measures- Cost of Quality - BPR

Unit-5 QUALITY MANAGEMENT SYSTEM

9 hours

Introduction-Benefits of ISO Registration-ISO 9000 Series of Standards-Sector-Specific Standards - AS 9100, TS16949 and TL 9000-- ISO 9001 Requirements-Implementation-Documentation Internal Audits-Registration-ENVIRONMENTAL MANAGEMENT SYSTEM: Introduction—ISO 14000 Series Standards—Concepts of ISO 14001—Requirements of ISO 14001-Benefits of EMS.

Total Lecture hours: 45 hours

Text Book(s)

 Dale H.Besterfiled, Carol B.Michna, Glen H. Besterfield, Mary B.Sacre, Hemant
 Urdhwareshe and Rashmi Urdhwareshe, "Total Quality Management", Pearson Education Asia, Revised Third Edition, Indian Reprint, Sixth Impression,2013.

Reference Books

1.Joel.E. Ross, "Total Quality Management – Text and Cases", Routledge., 20172.Kiran.D.R, "Total Quality Management: Key concepts and case studies, Butterworth
– Heinemann Ltd, 2016.3.Oakland, J.S. "TQM – Text with Cases", Butterworth – Heinemann Ltd., Oxford, Third
Edition, 20034.Suganthi, L and Anand Samuel, "Total Quality Management", Prentice Hall (India)

Pvt. Ltd., 2006 .

Course Code	Course Title	L	Т	Ρ	J	С
22AGP701	REMOTE SENSING AND GIS LABORATORY	0	0	4	0	2
Pre-requisite		Syllabus version		v. ′	1.0	

Course Objectives:

1. To introduce the principles and basic concepts of Remote Sensing and GIS through hands on training.

Course Outcome:

- Gain sufficient knowledge on satellite data processing and available data products.
- Know the concept of GIS and its tools.
- Have knowledge on data input and analysis techniques
- Utilize these advanced techniques in addressing problems in various fields of agricultural engineering.

LIST OF EXPERIMENTS:

- 1. Measurement of relief displacement using parallax bar
- 2. Stereoscopic vision test
- 3. Aerial photo interpretation visual
- 4. Satellite images interpretation visual
- 5. Introduction to QGIS
- 6. Geo-referencing of images
- 7. Image enhancement practice
- 8. Supervised classification practice
- 9. Unsupervised classification practice
- 10. Database Management Systems
- 11. Spatial data input and editing Digitising
- 12. Raster analysis problems Database query
- 13. GIS applications in DEM and its analysis
- 14. GIS application in watershed analysis
- 15. GIS application in rainfall-runoff modelling
- 16. GIS application in soil erosion modelling

	Total Lecture hours: 60hours				
Text E	Book(s)				
1.	Lillesand, T.M. and Kiefer, R.W. 2005. "Remote Sensing and Image Interpretation ", II edition. John Wiley & sons				
2.	2. Heywood, I., Cornelius. S., Carver. S 2002. An Introduction to Geographical Information Systems. Addison Wesley Longman. New York.				
Refer	ence Books				
1.	Floyd F. Sabins. 2005. "Remote Sensing: Principles and Interpretation", III edition. Freeman and Company New York				
2.	Jensen, J.R., 2004. "Introductory Digital Image Processing: A Remote Sensing Perspective". Prentice – Hall. New Jersey				

Course Code	Course Title	L	Т	Ρ	J	С
22AGP702	RENEWABLE ENERGY IN AGRICULTURAL ENGINEERING LABORATORY	0	0	4	0	2
Pre-requisite		Sy ve	llab ersio	ous on	v. ′	1.0

Course Objectives:

- 1. To gain the practical knowledge on various renewable energy gadgets.
- 2. To Know the concept of Automatic weather station
- 3. To get knowledge on Testing of natural convection solar dryer

Course Outcome:

- Be exposed to renewable energy sources and their applications.
- Aim sufficient knowledge on Purification of biogas CO₂ and H₂S removal
- Know the concept of Automatic weather station
- Have knowledge on Testing of natural convection solar dryer

LIST OF EXPERIMENTS:

- 1. Characterization of biomass proximate analysis
- 2. Determination of caloric value of fuels solids and gases
- 3. Design of KVIC / Deenbandhu model biogas plant
- 4. Study of UASB biomethanation plant
- 5. Purification of biogas CO_2 and H_2S removal
- 6. Performance evaluation of agro based gasifier
- 7. Study on pyrolysis unit Biochar, Charcoal and Tar making process
- 8. Testing of biogas/producer gas engines

9. Study on briquetting and Stoichiometric calculations

- 10. Automatic weather station Analysis of wind data and prediction
- 11. Testing of solar water heater
- 12. Testing of natural convection solar dryer
- 13. Study on Solar power and I-V Characteristics
- 14. Testing of solar photovoltaic water pumping system

The lab includes visit to biomass power plant and wind farms.

Total Lecture hours:	60hours
----------------------	---------

Reference Books

1.	Khandelwal, K.C. and Mahdi, S.S. "Biogas Technology". Tata Mc Graw Hill Pub. Co.
	Ltd., New Delhi, 1986.
2	Nijaguna, B. T. "Biogas Technology" New Age International Pvt. Ltd., New Delhi,
	2006.
3	Rao. S and B.B. Parulekar. Energy Technology – Non conventional, Renewable and
0.	Conventional. Khanna Publishers, New Delhi, 2000
4	Solanki, C.S. "Solar Photovotaics – Fundamentals, Technologies and Applications",
	PHI Learning Pvt. Ltd., New Delhi, 2011

Course Code	Course Title	L	Τ	Ρ	J	С
22AGP801	PROJECT WORK	0	0	0	20	10
Pre-requisite		Syl ve	labu rsioi	is n	v. 1	1.0

Course Objectives:

1. To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

Course Outcome:

- Identify agricultural engineering problems reviewing available literature.
- Identify appropriate techniques to analyze complex agricultural engineering problems.
- Apply engineering and management principles through efficient handling of project, have a clear idea of his/her area of work and they are in a position to carry out the work in a systematic way

Students in a group of 3 or 4 shall work on a topic approved by the head of the department under the guidance of a faculty member and prepare a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is

evaluated based on three reviews by the review committee constituted by the Head of the Department. The project work is evaluated based on oral presentation and the final project report jointly by a team of examiners including one external examiner.

Total Lecture hours: 300 PERIODS

PROFESSIONAL ELECTIVES VERTICAL 1: FOOD PROCESSING

Course Code	Course Title	L	TP	J	С		
22AGPE01	REFRIGERATION AND COLD STORAGE	3	0 0	0	3		
Bro-roquisito		Syllabus		1 0			
				sion			
Course Objecti	Course Objectives:						
1. To interp	ret principles of operation of different Refrigeration & Ai	r con	ditionin	g sy	stems		
2. To under	stand the types of compressors and expansion devices	and	their ap	oplica	ations		
3. To comb	ine the parameters involved in design of the various air	con	ditionin	g an	d cold		
storage s	systems						
Course Outcon	ne:						
1. Select a	ppropriate components of the refrigeration unit and	anal	yze the	eff	ect of		
different	refrigerants on environment						
2. Different	ate various refrigeration cycles and its applicability						
3. Apply kr	nowledge of psychrometry for air conditioning & var	ious	food p	oroce	essing		
operation	IS						
4. Apply the	e knowledge of refrigeration and air conditioning in pe	ersev	ering fo	ods	using		
domestic	and industrial refrigeration systems						
5. Choose	and design appropriate cold storage system for ensuring	g the	produc	t qua	ality		
Unit-1	REFRIGERATION PRINCIPLES AND COMPONENTS		9 h	ours	5		
Refrigeration principles - refrigeration effect coefficient of performance -units of refrigeration -							
Refrigeration c	omponents -compressor-classification-principle and	work	ing- co	onde	nsers-		
typesconstruction, principle and working. Evaporators - types-principle and working. Expansion							
device types construction, principle and working. Refrigerants properties classification							
comparison and advantages chlorofloura carbon (CFC) refrigerants - effect on environmental							
pollution - alternate refrigerants							
Unit-2 VAPC	OUR COMPRESSION AND VAPOUR ABSORPTION C	YCL	E 9 h	ours	\$		
Simple vapour compression cycle - I-S diagram - p-h chart- vapour compression system-							
different types-vapour absorption cycle simple and practical vapour absorption system-							
advantages- ideal vapour absorption system- Electrolux retrigerator Lithium bromide							
retrigeration-construction and principles.							

Unit-3		APPLIED PSYCHROMETRY		9 hours			
Principle and properties of psychrometry, Representation of various psychometric processes on psychometric chart and their analysis, by-pass factor, sensible heat factor, room sensible heat factor, equipment sensible heat factor, grand sensible heat factor, apparatus dew point ventilation and infiltration, energy efficiency ratio. Use of psychometric charts. Cooling and heating load calculations						esses nsible point, g and	
Unit-4		AIR CONDITIONING SYSTEM		9 hc	ours	;	
Air con system condition freezer	Air conditioning systems-equipment used-classification-comfort and Industrial air conditioning system- winter, summer and year- round air conditioning system- unitary and central air conditioning system- application of refrigeration and air conditioning-domestic refrigerator and freezer- ice manufacture.						
Unit-5	APPI	ICATIONS OF REFRIGERATION IN FOOD PROCES	SING	9 hc	ours	;	
storage. Insulation properties and types of insulation material. Cold storage for milk, meat, fruits, vegetables, poultry and marine products. Refrigerated Transport, Handling and Distribution, Cold chain, refrigerated product handling, order picking, refrigerated vans, refrigerated display. Sensors for cold storage management.						meat, and vans,	
Text B	ook(s)		iours:	45 r	lour	S	
1.	C. P. Aro Private L	ra, Refrigeration and Air Conditioning, Tata McGraw Hil mited, New Delhi, 2008	ll Publis	hing	Con	npany	
2.	2. Langley and C. Billy, Refrigeration and Air conditioning, Ed. 3, Engle wood Cliffs (NJ), Prentice Hall of India, New Delhi, 2009						
Refere	nce Bool	<s< td=""><td></td><td></td><td></td><td></td></s<>					
1.	Roy J. Dossat, Principles of Refrigeration, Pearson Education, New Delhi, 2007						
2. N. F Stoecker and Jones, Refrigeration and Air Conditioning, Tata McGraw Hill, New Delhi, 2008							
3.	Jeffery Star and John Estes, "Geographical Information System – An Introduction," Prentice Hall India Pvt. Ltd., New Delhi, 1998.						
22AGPE02 FOOD AND		FOOD AND DAIRY ENGINEERING	3 0	0	0	3	
Pre-requisite Syllabus v.				V.	1.0		

v. 1.0 version

Course Objectives:

1. To acquire better understanding of the food concentration and thermal processing of foods

- 2. To know the physical and thermal properties of milk and different methods of milk processing and milk products
- 3. To gain knowledge on the theory, methods, and equipment for the various unit operations of dairy industry

Course Outcome:

- 1. Explain physio-chemical properties of food material and select suitable thermal processing method for food products based on their properties
- 2. Compare food drying systems and assess their limitations in applying different food products
- 3. Explain physical, chemical and thermal properties of milk and compare milk processing techniques
- 4. Apply various milk processing equipment for processing and producing milk products and evaluate their performance
- 5. Assess the application and limitations of advanced food processing techniques

Unit-1 BASIC PROPERTIES AND THERMAL PROCESSING OF FOODS 9 hours MATERIALS

Constituents of food and their energy values – rheological properties of food materials- texture of food materials -viscometry - Concentrations of foods - freeze concentration - membrane concentration - Thermal processing of foods - product-time-temperature relationships - cooking, blanching pasteurization techniques- UHT Processing - sterilization of solid and liquid foods- batch and continuous sterilization equipment- interaction of heat energy on food components - kinetics of microbial destruction - Preservation by retort processing - principles and applications - microwave and radio frequency heating in food processing- Canning-Aseptic packaging.

Unit-2

DRYING AND DEHYDRATION

9 hours

0 hours

Food spoilage - causes for spoilage -Moisture content - free moisture - bound and unbound moisture - equilibrium moisture content - Water activity - sorption behaviour of foods - types of dryers - drum, spray, Freeze drying, dryers-advantages and disadvantages - dehydration - methods of dehydration osmotic dehydration

MILK PROCESSI	NG	onours			
Physical, chemical, thermal and rheological prope	rties of milk - storage tan	ks. Receiving			
handling and testing of milk - storage. Pasteurization - application- equipment - Low					
Temperature Long Time - High Temperature S	Short Time - Ultra High	Temperature			
pasteurization, filling and packaging of milk and milk	products				

Unit-4	DAIRY EQUIPMENT AND PRODUCTS	10 hours
--------	------------------------------	----------

Homogenisation - theory and working of homogenisers - high pressure homogenization of milk and other food suspensions - design criteria for homogenizing equipment- cream separation principles - types of separators. Clarifiers - butter churns - ghee manufacture - equipment - whey manufacture- techniques - equipment - ice cream freezers - condensed milk - milk powder manufacturing drying equipment- milk products - paneer - casein - probiotic dairy products - kefirmilk plant sanitation requirements - Cleaning in-place and its functions.

Unit-5

ADVANCED TECHNOLOGIES IN FOOD PROCESSING

9 hours

Non-thermal and other alternate thermal processing in Food processing - Nanotechnology: History- fundamental concepts - tools and techniques Nanomaterials - applications in food packaging and products, implications, environmental impact of nanomaterials and their potential effects on global economics, regulation of nanotechnology

	Total Lecture hours: 45 hours					
Text I	Text Book(s)					
1.	R. Paul Singh and Dennis R. Heldman. Introduction to Food Engineering. 5th edition Academic Press, USA. 2013.					
2.	Heldman, Dennis R., Daryl B. Lund, and Cristina Sabliov, eds. Handbook of food engineering. CRC press, 2018.					
Reference Books						
1.	H.G.Kessler, Food Engineering and Dairy Technology, Freising, Germany, Verlag A.Kessler, 1981					
2.	Sukumar De, Outlines of Dairy: Technology, Oxford University Press, 2001					
3.	Minj, Jagrani, Aparna Sudhakaran, and Anuradha Kumari, eds. Dairy Processing: Advanced Research to Applications. Singapore: Springer, 2020.					
4.	V. Chelladurai, and Digvir S. Jayas. Nanoscience and nanotechnology in foods and beverages. CRC Press, 2018.					

Course Code	Course Title	L	Т	Ρ	J	С
22AGPE03	PROCESS ENGINEERING OF FRUITS AND VEGETABLES	3	0	0	0	3
Pre-requisite		Syllabus version			v. 1.0	

Course Objectives:

- 1. Implement specific post-harvest handling technique for storage and transport of fruits and vegetables
- 2. Apply preservation techniques to produce value added fruits and vegetable products
- 3. Learn the industrial scale processing and preservation methods to extend the shelf life of fruit and vegetable commodities

Course Outcome:
1.	Implement	low	temperature,	modified	atmosphere	and	controlled	atmospheric
	storage me	thod	s for storage of	f fruits and	l vegetables			

- 2. Produce value added products from fruits and vegetables by using suitable preservation method (sugar, salt or dehydration)
- 3. Produce dehydrated fruits and vegetables
- 4. Apply minimal processing and fermentation methods to produce value added products from fruits and vegetables
- 5. Plan to produce canned and bottled fruits and vegetables

Unit-1 HARVESTING, HANDLING AND STORAGE OF FRUITS AND 9 hours VEGETABLES

Fruits and vegetables: classification, nutritional profile - Harvesting of fruits and vegetables - maturity indices - post harvest physiology - handling - pre-cooling and storage - Storage under 108 ambient condition, low temperature storage - chilling, frozen storage- chilling injury, freeze burn. Controlled atmosphere storage, Modified atmosphere storage - concepts and methods - gas composition - Changes during storage

Unit-2 PRESERVATION OF FRUITS AND VEGETABLES BY VALUE 9 hours ADDITION

Methods of fruit and vegetable preservation - Processing using sugar- Preparation of jam, jelly, marmalade, squash, RTS, crush, nectar, cordial, fruit bar, preserves, candies and carbonated, fruit beverages. Processing using salt - Brining - Preparation of pickles, chutney and sauces, ketchup. Machinery involved in processing of fruits and vegetables products

Unit-3

PRESERVATION BY DRYING AND DEHYDRATION

9 hours

Drying and dehydration - Types of driers - Solar, cabinet, fluidized bed drier, spouted bed drier, heat pump drier, vacuum drier and freeze drier - Applications. Preparation of product. Changes during drying and dehydration. Problems related to storage of dried and dehydrated products.

Unit-4

MINIMAL PROCESSING AND FERMENTATION

9 hours

Primary processing and pack house handling of fruits and vegetables; Peeling, slicing, cubing, cutting and other size reduction operations for fruits and vegetables, Minimal Processing of Fruits and Vegetables. Preservation by fermentation - wine, vinegar, cider and sauerkraut.

Unit-5

CANNING AND BOTTLING

9 hours

Canning - principles, types of cans - preparation of canned products - packing of canned products - spoilage of canned foods. Bottling of fruit and vegetable. Precautions in canning operations. General considerations in establishing a commercial fruit and vegetable cannery, machineries involved in canning and bottling unit.

	Total Lecture hours: 45 hours							
Text I	Book(s)							
1.	Norman W. Desrosier, and James N. Desrosier. The Technology of Food Preservation 4th Edition, CBS Publisher & Distributions, New Delhi, 2004.							
2.	R.P. Srivastava and S. Kumar, Fruit and Vegetable Preservation: Principles and Practices, Third Edition, CBS Publishers & Distributors-New Delhi, 2002.							
Reference Books								
1.	A. Chakraverty, A.S. Mujumdar, G.S.Vijaya Raghavan and H.S. Ramaswamy, Handbook of Postharvest Technology: Cereals, Fruits, Vegetables, Tea, and Spices. CRC Press, USA, 2003.							
2.	Girdhari Lal, G. S.Siddappa and G.L. Tandon, Preservation of Fruits and Vegetables, Indian Council of Agricultural Research, New Delhi, 2009.							
3.	D.K. Salunkhe, and S.S. Kadam, Handbook of Fruit Science and Technology: Production, Composition and Processing, Marcel Dekker, New York, 1995.							
4.	K.Sharma, Stevan J.Mulvaney and Syed S.H. Rizvi, Food Process Engineering- Theory and Laboratory equipments, John Wiley & Sons, New York, 2000.							

Course Code	Course Title	L	Т	Ρ	J	С				
22AGPE04	STORAGE AND PACKAGING TECHNOLOGY	3	0	0	0	3				
Pre-		Syllabus version		v 10						
requisite				v. 1.0						

- 1. To study about the different storage structures
- 2. To learn about the different packaging materials and various methods of packaging to improve the shelf life of the products
- 3. To understand the concepts of Controlled Atmosphere Storage and Modified Atmosphere Packaging

Course Outcome:

- 1. Possess the knowledge on Storage environment and storage structures
- 2. The students will have a clear understanding of various methods of storage and different packaging techniques for food.
- 3. Determine the principles of Controlled Atmosphere Storage and Modified Atmosphere Packaging
- 4. Differentiate various canning systems and their application in food industry
- 5. Apply the knowledge to choose suitable flexible packaging film and the sealing technique for processed foods.

Unit-1 STORAGE ENVIRONMENT AND STORAGE STRUCTURES 9 hours

Storage losses in agricultural commodities. Physical properties of grain affecting storabilityFactors of spoilage- fungi and mycotoxins- Treatments for enhancing shelf life-Fumigation Processes for bag storage piles. Rural storage structures- Bag Storage and its Design. Parameters and types of storage structure. Bulk Storage in silos and large Bins Construction of Silos, Problems of Silo storage, relative Costs of Silo and Bag Storage. Quality Changes and remedial measures of Grains during storages. Design considerations and heat load calculation of cold storage

Unit-2 INTRODUCTION TO PACKAGING

9 hours

Introduction Protection of Food products major role and functions of food packaging Effect of environmental factors, mechanical forces and biological factors on food quality and shelf life. Estimating the shelf life requirement accelerated storage studies. Tests on packaging materials Mechanical strength (Tension, notch and tearing strengths), Gas and water vapour transmission rates.

Unit-3 CONTROLLED ATMOSPHERE STORAGE AND MODIFIED ATMOSPHERE PACKAGING

9 hours

Introduction Protection of Food products major role and functions of food packaging Effect of environmental factors, mechanical forces and biological factors on food quality and shelf life. Estimating the shelf life requirement accelerated storage studies. Tests on packaging materials Mechanical strength (Tension, notch and tearing strengths), Gas and water vapour transmission rates.

Unit-4 CANNING

9 hours

Introduction and concept of CA Storage Equipment for creating, maintaining and measuring controlled atmosphere - Biochemical aspects of CA storage - Static & Dynamic CA, Fruit Ripening, Hypobaric and Hyperbaric Storage. Effects of concentrations of compositional gases on Fruits and vegetables. MAP-Film & Coating types, Permeability, Gas Flushing, Perforation, Absorbents, Humidity, Temperature, Chilling Injury, Shrink wrapping, Vacuum Packing, Modified Interactive Packaging, Minimal Processing, Equilibrium Modified Atmosphere Packaging, Effect of scavengers

Unit-5 FLEXIBLE FILMS PACKAGING

9 hours

Formation of Films and pouches, Co-extruded films and Laminates applications. Filling and Sealing of pouches and flexible plastic containers, Pouch form fill seal machines: Rigid and Semi rigid plastic packaging. Fabrication methods Thermo forming, Blow moulding, Injection moulding, Extrusion Blow moulding applications. Laminated Paper board Cartons, Fibre Board and Corrugated Card Board packaging - applications. Nano packaging and smart packaging. Printing on packages, Bar codes, Nutrition labeling and legislative requirements. Sensors and IoT in Food packaging.

Total Lecture hours: 45 hours

Text I	Book(s)				
1	Sahay, K.M. and K.K.Singh. 1996. Unit operations of agricultural processing. Vikas				
	Publishing House Pvt. Ltd., New Delhi.				
2	Pandey, P.H.2002. Post harvest engineering of horticultural crops through objectives.				
Ζ.	Saroj Prakasam. Allahabad.				
Refer	Reference Books				
1.	Food Packaging Technology, Hand book, 2004. NIIR Board, New Delhi.				
2	Samuel Matz, The Chemistry and Technology of Cereals as Food and Feed, Chapman				
Ζ.	& Hall, 1992				
2	N.L.Kent and A.D.Evans, Technology of Cereals (4th Edition) Elsevier Science				
3.	(Pergaman), Oxford, UK,1994				

Cour	se e	Course Title	L	т	Ρ	J	С		
22AGP	E05	FOOD PROCESS EQUIPMENT AND DESIGN	3	0	0	0	3		
Pre-requ	uisite		S N	yllabus version v. 1.0					
Course	Objec	tives:	1						
1. Ir	npart k	nowledge on basic principles of designing equipment	for	food p	roce	ssing	I		
 Become familiar with design and manufacture of storage tanks, pulpers, heat exchangers, driers etc. 									
3. P	rovide	an idea about devising cold storage units, freezers et	С						
Course	Outco	me:							
1. A	Analyse	e the various process equipment design.							
2. l	Jnders	tand the design procedure the development of vessel	s an	d clea	ners				
3. A	Analyse	e the different types heat exchanger methods							
4. A	Apply tl	ne different methods of conveying system							
5. 0	Optimiz	e the variables using CAD for the process equipment	des	ign.					
Unit-1		PROCESS EQUIPMENT DESIGN			9 h	ours			
Introduc	tion o	n process equipment design, principles and select	ion	of foc	od p	roces	ssing		
equipme	ent App	lication of design engineering for processing equipme	ent.						
Unit-2		DESIGN PROCEDURE			9 h	ours			
Design p	param	eters and general design procedure, Material specific	atio	n, Typ	es o	f mat	erial		
for proce	ess eq	uipment, Design codes, Pressure vessel design, Desi	gn o	f clear	ners				
Unit-3	Unit-3 HEAT EXCHANGER 91					ours			

Design of tubular heat exchanger, shell and tube heat exchanger and plate heat exchanger Problems on tubular heat exchanger, shell and tube type heat exchanger and plate heat exchanger

Unit-4

Unit-5

CONVEYING SYSTEM

CAD

9 hours

9 hours

Design of belt conveyer, screw conveyer and bucket elevator, Design of dryers. Design of milling equipment.

Optimization of design with respect to process efficiency, energy and cost, Computer Aided Design

Total Lecture hours: 45 hours

Text Book(s)

1.	Rajput R K, 2008 Heat and Mass Transfer. S Chand Publishers				
2.	Chakraverty, A. Post Harvest Technology of cereals, pulses and oilseeds. Oxford &				
	IBH publishing Co. Ltd., New Delhi.				
Reference Books					
	Dash S.K. Behartta, J.P. and Kar, A. Rice Processing and Allied Operations, Kalvani				
1.	Dash, S.K., Debalta, J.F. and Kal, A. Nice Processing and Alled Operations. Ralyan				
	Publishers, New Delhi.				
0	Sahay, K.M. and Singh, K.K. 1994. Unit operations of Agricultural Processing. Vikas				
2.	Sahay, K.M. and Singh, K.K. 1994. Unit operations of Agricultural Processing. Vikas Publishing house Pvt. Ltd. New Delhi				
2.	Sahay, K.M. and Singh, K.K. 1994. Unit operations of Agricultural Processing. Vikas Publishing house Pvt. Ltd. New Delhi Earle, R.L. 2003. Unit Operations in Food Processing. Pergamon Press. Oxford. U.K.				

Course Code	Course Title	L	Т	Ρ	J	С
22AGPE06	FOOD PLANT DESIGN AND MANAGEMENT	3	0	0	0	3
Pre-requisite	e-requisite Syllabus version					

Course Objectives:

- 1. State the different specifications and processes involved in the design and development of food processing plant
- 2. Define the processes involved in layout design
- 3. Evaluate the projects and cost estimation of designing food plant
- 4. Outline the product cost and plant overheads
- 5. Perform profitability analysis in food processing industry

Course Outcome:

1. Design and construct the well-equipped food processing plant for effective processing

- 2. List the start to end facilities, infrastructure, utilities, investments along with the government regulations and specifications for plant layout
- 3. Evaluate and estimate the capital investments and methods of cost estimation of

designing food plants

- 4. Assess the overall production cost, profitability and factors involved in the cost estimation of products manufactured
- 5. Analyze the problems involved in deciding the level of manufacture of a food product

Unit-1

PLANT LAYOUT-INTRODUCTION

9 hours

Design considerations of processing agricultural and food products. Plant design concepts and general design considerations: Plant layout, plant location, location factors and their interaction with plant location, location theory models, and computer aided selection of the location. Human factors in design, selection of materials of construction and standard component, design standards and testing standards.

Unit-2

PROCESS ECONOMICS OF PLANT LAYOUT

9 hours

Feasibility analysis and preparation of feasibility report: plant size, factors affecting plant size and their interactions, estimation of break-even and economic plant size; Product and process design, process selection, process flow charts, Plant utilities, electricity, water, steam, air, raw material requirements and computer aided development of flow charts

Unit-3

DEVELOPMENT AND PRESENTATION OF LAYOUT

9 hours

Hygienic design aspects and worker's safety, functional design of plant building and selection of building materials, estimation of capital investment, analysis of plant costs and profitability's, management techniques in plant design including applications of network analysis, preparation of project report and its appraisal.

Unit-4 FOOD PROCESSING PLANT & EQUIPMENT LAYOUT 9 hours

Plant layout and design of bakery and biscuit industries; fruits and vegetables processing industries including beverages; milk and milk products; meat, poultry and fish processing industries. Equipment layout in Food Industries : Basic understanding of equipment layout and. Preparation of flow sheets for material movement and utility consumption in food plants.

Unit-5

PROJECT EVALUATION AND COST ESTIMATION

9 hours

Preparation of flow sheets for material movement and utility consumption in food plants; Application of Program Evaluation and Review Technique (PERT) and Critical Path Method (CPM) in project planning and monitoring; Cost estimation for a Food Plant; Scale-up. Case Study: Preparation of plant layout and cost estimation for a food processing plant

Total Lecture hours: 45 hours

Text Book(s)

1.	Maroulis, Z.B. and Saravacos, G.D Food Process Design. Marcel Dekker Inc,. 2003								
2.	Antonio Lopez-Gomez, Gustavo V. Barbosa-Canovas, "Food Plant Design (Food Science and Technology)" CBC Press 2005								

Refer	Reference Books						
1.	Towler, G. and Sinnott, R.K. Chemical Engineering design principles, practice and						
	Economics of Plant and Procese. 2nd Edition. Elsevier.2012.						
0	Theunis C. Robberts . Food plant engineering system. II Edition, CRC Press,						
۷.	Washington, 2013.						
3.	M Moore, Mac Millan, Plant Layout & Design. Lames, New York, 1971						
5.							

Course Code	Course Title	L	Т	TPJC						
22AGPE07	EMERGING TECHNOLOGIES IN FOOD	3	0	0	3					
	PROCESSING		-	-	•					
Pre-requisite		Sy ve	llab rsic	us on	v. ′	1.0				
Course Objectiv	/es:									
1. Understar	nd and apply the different emerging technologies in proc	cessi	ng	of fo	ods					
2. Familiariz	2. Familiarize about the equipment used for the processing of foods by novel									
technolog	ies.									
3. Compare	the application of alternate thermal and non-thermal pro-	cess	ing	tech	iniqu	les				
on foods										
Course Outcom	e:									
1. Understa	nd the effect of high pressure processing on microbial ir	nacti	vati	on o	f foc	ods				
2. Apply the	principle of pulsed electric field and analyse the impac	t of	pul	sed	elec	tric				
field proc	essing for both solid and liquid foods									
3. Apply and	d assess the irradiation dosage requirement for foods									
4. Apply not	n thermal technologies for inactivation of microorganism	ns ar	nd i	mpro	ovet	the				
food qua	ity									
5. Apply ad	vanced thermal treatments for food processing and pres	serva	atio	n						
Unit-1	HIGH PRESSURE PROCESSING			9 h	ours	5				
Principles - Mech	nanism and applications of high pressure processing to f	ood	sys	tems	s - H	igh				
pressure proces	sing of salads, meats and sea foods, fruits and fruit prod	lucts	-Ef	fect	of h	igh				
pressure on mic	croorganisms, enzymes, textural and nutritional quality	y of	foo	ds -	• Otl	her				
applications of	high pressure processing - High Pressure Freezin	ng: I	orin	ciple	es a	and				
equipment, type	es of high pressure freezing process, microbiologic	al a	nd	enz	zyma	atic				
inactivation after	high pressure freezing.									
				0.1	~					
Unit-2	PULSED ELECTRIC FIELDS PROCESSING			9 n	ours	5				
Principles - Mee	chanism - PEF treatment systems - Main processing	g pa	ram	netei	sΡ	FF				
technology - Equ	technology - Equipment - Applications - Mechanisms of microbial and enzyme inactivation.									
PEF processing	or solid toods, liquid toods and beverages. Food safety	asp	ect	s of	puls	sed				
electric fields.										

Unit-3		FOOD IRRADIATION			9 h	ours	;		
Introdu	ction - Fu	ndamentals of food Irradiation - Type and sources of ra	diati	on,	dos	imet	ry,		
mode of	of action	of ionizing radiation - Direct and indirect effect, radia	tion	effe	ect c	n fo	od		
constitu	uents, Do	se requirement for different products and regulations.							
Unit-4	ALT	ERNATIVE NON THERMAL PROCESSING TECHNIQ	UES		9 h	ours	\$		
High intensity pulsed light technology: principles of PLT technology - Technological aspects of PLT - Effects of PLT technology on microorganisms and food quality. Ultrasound Processing: Principle of ultrasound - Fundamentals - Ultrasound as a processing and food preservation tool - Effect of ultra sound on properties of foods - Applications of ultrasound in microbial inactivation, assisted drying, extraction, osmotic dehydration, detection of foreign bodies, filtration and freezing - challenges in ultrasound processing. Radio frequency electric fields: equipment, applications for heating and drying, effect of radio frequency electrical field on inactivation of microorganisms									
Unit-5	A	LTERNATIVE THERMAL PROCESSING TECHNIQUE	S		9 h	ours	\$		
in micr applica bevera	owave he tions. Cas ges.	eating - combined microwave-vacuum drying, microwa se Study – development of a nonthermal processing tech	ave f	ree Je f	ze-c or fo	Irying od a	g - nd		
		Total Lecture P	nour	S:	45	houi	'S		
Text B	ook(s)								
1.	Emerging Edition, 2	Technologies for Food Processing. Da-Wen Sun (Ed), 014.	Acad	den	nic P	ress	, 2		
2.	Novel Fo Barbosa	ood Processing Technologies. M. P. Cano, M. S. Canovas, CRC Press, 1st Edition, 2004.	Тарі	a,	and	G.	V.		
Refere	nce Boo	KS							
1.	1. Maria Laura Passos, Claudio P. Ribeiro, Innovation in Food Engineering: New Techniques and Products, CRC press, 2010.								
2.	Howard Patrick [Technolo	Q. Zhang, Gustavo V. Barbosa-Canovas, V. M. Bal Junne, Daniel F. Farkas, James T. C. Yuan, Nontł gies for Food,2000	asub nerm	ran al	nania Proc	am, cessi	C. ng		
3.	Amit K. J Press, 20	aiswal, Food Processing Technologies: Impact on Product 7	uct A	ttril	oute	s. Cf	۶C		
Course	• • •			-					
Cours	ecode	Course little	L	I	۲	J	U		

Course Code	Course Title	L	Т	Ρ	J	С
22AGPE08	DEVELOPMENT OF PROCESSED PRODUCTS	3	0	0	0	3
Pre-requisite		Sy ve	llab rsio	ous on	V	. 1.0

- 4. To enable the students to understand the food processing methods
- 5. To understand the concepts of parboiling and technology of foods
- 6. To acquire the knowledge on food product development
- 7. To make the students to learn the fundamental concepts of thermal processing
- 8. To enable the students to study on mechanical handling of foods

Course Outcome:

At the end of the Course. Student will be able to

- 6. Choose the basic unit operations and processing methods of foods
- 7. Explain about parboiling and technology of foods
- 8. Explain about food product development
- 9. Explain about thermal processing operations
- 10. Describe mechanical handling of foods

Unit-1 Applications of unit operations to the food industry 9 hours

9 hours

Analytical processing concepts with regards to mass and energy balances, equipment involved in the commercially important food processing methods and unit operations; value addition to cereals like rice, wheat etc.

Unit-2 Parboiling

Parboiling of rice, quality of processed products of rice & wheat. Processing of pulses, extruded food product, fermented food product, frozen and dried product, technology ofmeat, fish and poultry products, technology of milk and milk products.

Unit-3 Technology of oilseeds and fat products

9 hours

9 hours

Snack foods, Fruits and vegetable products- candy, nutraceuticals, food product development trends, food additives and labeling.

Unit-4 Process equipment for thermal processing 9 hours

Evaporation, dehydration, drying, blanching, pasteurization, distillation, mechanical separationfiltration, sieving, centrifugation and sedimentation.

Unit-5 Mechanical handling

Conveying and elevation, size reduction and classification Mixing, Kneading, Blending and Emulsification.

Total Lecture hours: 45 hours

Text Book(s)

1.

Carl.W. Hall. (1988). Processing Equipments for Agrl.Products. McGraw Hill Pub.Co.

2.	Girdhari Lal, G.S. Siddappa & G.L. Tandon . (1998). Preservation of Fruits and Vegetables. ICAR, New Delhi.					
Reference Books						
1.	Gould, G. (1989). Mechanism of action of Food Preservation Procedures. Elsivier applied Science.					
2.	Kent, N.L. (1975). Technology of Cereals. Oxford Pergamom.					
3.	Kessle, H.G. Food Engineering and Dairy Technology. U.A. Kessler Freising, Germany.					

Course Code	Course Title	L	Т	Ρ	J	С
22AGPE09	ENGINEERING PROPERTIES OF AGRICULTURAL PRODUCE	3	0	0	0	3
Pre-requisite		Syllabus version		V	. 1.0	

- To enable the students to understand the principles and concepts of various properties of biological materials.
- To understand the concepts of rheology and different rheological models.
- To acquire the knowledge on physical, thermal, electrical, frictional and aerodynamic properties of food.
- To make the students to learn the fundamental concepts of the basic properties of food materials and enable them to process, preserve and use them for various applications.

Course Outcome:

At the end of the Course, Student will be able to:

- 1. Calculate the basic engineering properties of a biological material.
- 2. Analyze the flow behavior of biological materials and force deformation.
- 3. Analyze the Maxwell and Kelvin model equations in the rheology for important biological materials.
- 4. Explain the applications of frictional and aerodynamic properties in the design of processing equipment.
- 5. Explain the applications of electrical and thermal properties in the design of processing equipment.

Unit-1 Physical Properties

9 hours

Introduction and application of engineering properties of biological material. Physical properties of different food commodities and aided products – importance. Shape and size – criteria for describing shape and size. Roundness and sphericity – Volume and density – Specific gravity – Bulk density. Porosity – surface area – measurement of the same.

Unit-2 Rheology

9 hours

Introdu definitio	uction to rheology, basic concepts, Classification of rheology, ASTM sta on of terms. Rheological Properties, Flow behavior of biological materials,	ndard force
deform	ation curve; linear elastic limit, yield point, bio-yield point and rupture	point.
Stress	relaxation and creep behavior. Visco-elasticity and visco- plasticity.	
Unit-3	Rheological Models	9 hours
Introdu mechai kelvin r Viscosi viscom	ction to mechanical models. Kelvin and maxwell models. Electrical eq nical models. Rheological equations of maxwell model, generalized ma nodel and generalized kelvin model. Difference between kelvin and ma ty; Measurement of viscosity using viscometer, types of viscometer, eter	uivalence of xwell model, xwell model. problems on
Unit-4	Frictional and Aerodynamic Properties	9 hours
Basic c Rolling propert Importa Termin velocity	concepts, effect of load sliding velocity. Friction in agricultural materials, resistance, angle of internal friction and angle of repose. Application ies in design of processing equipment. ance of aerodynamic properties in Agricultural Processing equipments v al velocity and drag coefficient; frictional drag and profit drag or pressure of different grains, working of pneumatic conveyor based on aerodynam	measurement. ns of frictional with examples. drag. Terminal nic properties.
Unit-5	Electrical properties and Thermal Properties	9 hours
Unit-5 Electric Applica	Electrical properties and Thermal Properties al properties: Di-electrical properties; Dielectric loss factor and diele tions and role of electrical properties in food processing.	9 hours ectric constant.
Unit-5 Electric Applica Introdu	Electrical properties and Thermal Properties al properties: Di-electrical properties; Dielectric loss factor and diele tions and role of electrical properties in food processing. ction to thermal properties; Specific heat, thermal conductivity, thermal d	9 hours ectric constant. iffusivity, latent
Unit-5 Electric Applica Introdu heat of	Electrical properties and Thermal Properties cal properties: Di-electrical properties; Dielectric loss factor and diele tions and role of electrical properties in food processing. ction to thermal properties; Specific heat, thermal conductivity, thermal d vaporization, latent heat of fusion, sensible heat, enthalpy and heat energy	9 hours ectric constant. iffusivity, latent rgy calculation.
Unit-5 Electric Applica Introdu heat of	Electrical properties and Thermal Properties al properties: Di-electrical properties; Dielectric loss factor and dielections and role of electrical properties in food processing. ction to thermal properties; Specific heat, thermal conductivity, thermal d vaporization, latent heat of fusion, sensible heat, enthalpy and heat ener Total Lecture hours:	9 hours ectric constant. iffusivity, latent rgy calculation. 45 hours
Unit-5 Electric Applica Introdu heat of Text B	Electrical properties and Thermal Properties cal properties: Di-electrical properties; Dielectric loss factor and dielections and role of electrical properties in food processing. ction to thermal properties; Specific heat, thermal conductivity, thermal d vaporization, latent heat of fusion, sensible heat, enthalpy and heat ener Total Lecture hours:	9 hours ectric constant. iffusivity, latent rgy calculation. 45 hours
Unit-5 Electric Applica Introdu heat of Text B	Electrical properties and Thermal Properties cal properties: Di-electrical properties; Dielectric loss factor and diele tions and role of electrical properties in food processing. ction to thermal properties; Specific heat, thermal conductivity, thermal d vaporization, latent heat of fusion, sensible heat, enthalpy and heat ener Total Lecture hours: Dok(s) Physical properties of plant and animal materials, Mohsenin N N, G Breach Science Publishers, New York, 2nd edition ,1986.	9 hours ectric constant. iffusivity, latent rgy calculation. 45 hours
Unit-5 Electric Applica Introdu heat of Text B 1.	Electrical properties and Thermal Properties cal properties: Di-electrical properties; Dielectric loss factor and diele tions and role of electrical properties in food processing. ction to thermal properties; Specific heat, thermal conductivity, thermal d vaporization, latent heat of fusion, sensible heat, enthalpy and heat ener Total Lecture hours: Dock(s) Physical properties of plant and animal materials, Mohsenin N N, G Breach Science Publishers, New York, 2nd edition ,1986. Engineering Properties of Foods, Rao M A, Syed S H Rizvi and Ashim Press – Taylor & Francis Group, Boca Raton, FL, 4 th edition, 2014.	9 hours ectric constant. iffusivity, latent rgy calculation. 45 hours Fordon and or K Datta,CRC
Unit-5 Electric Applica Introdu heat of Text B 1. 2. Refere	Electrical properties and Thermal Properties cal properties: Di-electrical properties; Dielectric loss factor and dielections and role of electrical properties in food processing. ction to thermal properties; Specific heat, thermal conductivity, thermal d vaporization, latent heat of fusion, sensible heat, enthalpy and heat ener Total Lecture hours: Dok(s) Physical properties of plant and animal materials, Mohsenin N N, G Breach Science Publishers, New York, 2nd edition ,1986. Engineering Properties of Foods, Rao M A, Syed S H Rizvi and Ashim Press – Taylor & Francis Group, Boca Raton, FL, 4 th edition, 2014. nce Books	9 hours ectric constant. iffusivity, latent rgy calculation. 45 hours Fordon and K Datta,CRC
Unit-5 Electric Applica Introdu heat of Text B 1. 2. Refere 1.	Electrical properties and Thermal Properties cal properties: Di-electrical properties; Dielectric loss factor and diele tions and role of electrical properties in food processing. ction to thermal properties; Specific heat, thermal conductivity, thermal d vaporization, latent heat of fusion, sensible heat, enthalpy and heat ener Total Lecture hours: Dok(s) Physical properties of plant and animal materials, Mohsenin N N, G Breach Science Publishers, New York, 2nd edition ,1986. Engineering Properties of Foods, Rao M A, Syed S H Rizvi and Ashim Press – Taylor & Francis Group, Boca Raton, FL, 4 th edition, 2014. nce Books Food and Process Engineering Technology, Wilhelm LR, Suler W A Brusewitz, GH, American Society of Agricultural Engineers (ASAE), Si MI.	9 hours ectric constant. iffusivity, latent rgy calculation. 45 hours Gordon and n K Datta,CRC and t. Joseph,
Unit-5 Electric Applica Introdu heat of Text B 1. 2. Refere 1. 2.	Electrical properties and Thermal Properties al properties: Di-electrical properties; Dielectric loss factor and diele tions and role of electrical properties in food processing. ction to thermal properties; Specific heat, thermal conductivity, thermal d vaporization, latent heat of fusion, sensible heat, enthalpy and heat ener Total Lecture hours: Total Lecture hours: Dok(s) Physical properties of plant and animal materials, Mohsenin N N, G Breach Science Publishers, New York, 2nd edition ,1986. Engineering Properties of Foods, Rao M A, Syed S H Rizvi and Ashim Press – Taylor & Francis Group, Boca Raton, FL, 4 th edition, 2014. nce Books Food and Process Engineering Technology, Wilhelm LR, Suler W A Brusewitz, GH, American Society of Agricultural Engineers (ASAE), Si MI. Engineering Properties of Biological Materials, O.P. Singhal and D.V.K Saroj Prakashan, Allahabad, 1 st edition, 2003.	9 hours ectric constant. iffusivity, latent rgy calculation. 45 hours Gordon and n K Datta,CRC and t. Joseph, K. Samuel,

Course Code	Course Title	L	Т	Ρ	ſ	С
22AGPE10	INSTRUMENTATION AND SENSORS IN FOOD PROCESSING	3	0	0	0	3

Pre-requ	lisite		Syllabus version	v. 1.0				
Course O	bjecti	ves:						
Тс	o build	the students ability to control and operate all kinds of m	easuring	instruments				
ar	and sensors used in food processing industries.							
Course O	Course Outcome:							
At the end of the Course, Student will be able to:								
1. To	o contro	ol basic instruments used for measuring speed and velo	city of equ	ipment's				
2. To	o contro	ol basic instruments used for measuring energy of equip	ment's					
3. co	ontrol th	e process operations through precise instrumentation						
4. kn	owledg	ge of sensors for precision analysis of food quality in foo	d industrie	es.				
5. kn	owledg	ge of image processing methods for precision analysis	of food qu	ality in food				
inc	dustries	3						
	<u> </u>		- I -					
Unit-1	Basic	instrumentation systems	9	hours				
Basic inst	rument	ation systems and transducer principles. Displacement	transduce	rs, Potential				
meters, I	LDVT,	Piezoelectric and capacitive transducers, Digital	transduce	rs, velocity				
transduce	ers.							
Unit-2	Metho	d of separation of force	. 9	hours				
Accelerati	ion and	d absolute motion measurement, Force transducer, St	rain gaug	e, Hydraulic				
load cell,	Cantile	ever type and probing ring. Method of separation of forc	e: Iorque	, power and				
energy me	easurir	ig technique.						
	T a			h				
Unit-3	remp	erature measuring instruments	9	nours				
Temper measur Rotame	ature ement, eter, Dr	measurement using bi-metals, thermisters, therm manometers. Flow transducer, positive displacer ag force, hot wire anemometer.	ocouples, nent, ver	humidity Iturimeter,				
Unit-4	Biose	nsor	9	hours				
Theory ar	nd clas	sifications of chemical sensors, biosensors, fibre optic	sensors,	gas sensors				
etc. Bios	ensor:	Concepts, types of biosensors, methods of imm	nobilizing	biosensors,				
application	application.:							
Unit-5	Imagi	ng processing methods	9	hours				
X-ray ima	ging, C	computed tomography, MRI, Ultrasound, Hyperspectral in	maging. S	pectroscopy				
and chem	ometri	cs: UV and visual spectroscopy, NIR spectroscopy, FTI	R spectros	copy.				
		Total Lecture h	ours: 4	5 hours				
Text Boo	k(s)							

1.	Doebelin EO. 1990. Measurement Systems Applications and Design. Tata McGraw Hill.				
0	Erika KR and Brimelow JB. 2001. Instrumentation and Sensors for the Food Industry.				
Ζ.	CRC Woodhead.				
Reference Books					
	Nakra BC and Chaudhary KK. 2004. Instrumentation Measurement and Analysis. Tata				
1.	McGraw Hill				
2	Mukhopadhyay. 2014. Novel Sensors for Food Inspection: Modelling, Fabrication a nd				
2.	Experimentation. Springer				

VERTICAL 2- FARM MACHINERY AND ENERGY

Course Code	Course Title	L	Т	Ρ	J	С
22AGPE11	FARM POWER AND MACHINERY MANAGEMENT	3	0	0	0	3
Pre-requisite		Sy ve	llab ersio	ous on	V	1.0

Course Objectives:

1. To expose the student with the mechanization status in the country and management techniques for future requirements.

Course Outcome:

At the completion of the course the student will:

- have knowledge about the present status of farm mechanization
- be able to optimally select machinery for varying uses.
- be able to plan for mechanization of the farm.
- be able to estimate the cost of machinery.
- be able to create custom hiring centers

Unit-1 FARM MECHANIZATION

9 hours

The role of farm mechanization and its relationship to productivity, employment, social and Technological change.- Farm Power availability- Mechanization status in India–performance index of power source and farm machinery -Scheduling of farm operations

Unit-2 COST ANALYSIS

9 hours

Farm records and inventory control - cost analysis of machinery: fixed cost and variable costs, effect of inflation on cost; Cost economics of tractor and farm machinery – land preparation, planting , intercultural, plant protection and harvesting machinery cost calculation

Unit-3	MACH			9 hou	irs	
Select	ion of trac	tor and farm machinery – Matching implements for differ	ent hp	- compi	utation	ı of
hp req	uirement ·	optimum machinery and Replacement criteria; Break-e	ven ar	alysis,	reliabil	lity
and ca	ish flow pr	oblems;				
Unit-4	FARM	I MACHINERY OPERATION AND MANAGEMENT		9 hou	ırs	
Opera	tions and	adjustments of Land preparation, planting, intercultura	ıl, plar	it protec	tion a	ind
harves	ting mach	inery – management of machinery .				
Unit-5	CUST	OM HIRING MODELS		9 hou	ırs	
Establ	ishment o	f CHC-operationalization – Custom hiring models – ca	ase st	udies o	f custo	om
hiring	 Custom 	hiring project formulation - ownership vs custom hirin	ng ser	vices- E	conon	nic
viabilit	y of custo	m hiring service units – Replacement of farm machinery	,			
		Total Lecture h	ours	45 ho	ours	
Text E	look(s)					
1.	Donnell H	lunt , Farm Power and Machinery Management				
_	Johl S S	and Kapur T R 1989. Fundamentals of Farm Business	Mana	gement	, Kalya	ani
2.	Publishe	rs , Ludhiana				
Refere	ence Boo	ks				
	Mahajan	M 2001. Industrial Engineering and Production Manage	ment I	Dhanpet	t Rai a	ind
1.	Co (P) Lt	d. New Delhi				
	Sharma	D N and S.Mukesh, 2013. Farm Power and Machine	ery Ma	inagem	ent, Ja	ain
2.	Brothers,	New Delhi.				
						
	_				_	

Course coue	Course Title				5			
22AGPE12	TESTING AND EVALUATION OF FARM MACHINERY AND EQUIPMENT	3	0	0	0	3		
Pre-requisite		Syl ve	llab rsio	ous on	v. 1.0			
Course Objecti	ves:							
1. Learn out testing of tractors and all other agricultural equipment and machinery								
Course Outcomes:								

• Understand the basics of testing procedures and standards of tractor testing

- Understand the testing procedures and standards of tillage, sowing equipment
- Understand the testing procedures and standards of intercultural equipment
- Understand the testing procedures and standards of harvesting equipment

• Understand the safety standards and testing procedures

Unit-1 TESTING OF AGRICULTURAL TRACTORS 9

9 hours

Testing and evaluation system in India - Agricultural machinery situation -Mechanization policy – future prospects - standardization efforts - type of testing systems – General regulations terminology- basic measurements, speed, fuel consumption, smoke density and power measurement - test items, specifications checking - PTO performance test- engine test, drawbar performance test - field test procedures -interpretation of results

Unit-2 TESTING OF TILLAGE AND SOWING EQUIPMENT

Testing of tillage machinery - laboratory test (hardness testing, chemical analysis) - field test (rate of work, quality of work, draft measurement, fuel consumption) - seed drill - laboratory test (seed drill calibration) - field checking and field tests

Unit-3

TESTING OF INTERCULTURAL EQUIPMENT

9 hours

9 hours

Testing and evaluation of weeders - types of tests for weeder - types of pesticide application equipment - terminology - types of tests for sprayers - testing methods - types of test for duster - testing methods

Unit-4

TESTING OF COMBINE HARVESTER

9 hours

Types of grain combines - combine systems - test items - procedure for laboratory testing materials for field test - observations during field tests - sample analysis- data analysis summary of performance parameters - analysis of field test data

Unit-5 SAFETY TESTING OF AGRICULTURAL MACHINERY

9 hours

Types of agricultural machinery accidents - causes of agricultural machinery accidents - technical| measurements for ensuring safety - methods of safety testing- ROPS and FOPS - safety precautions

Total Lecture hours: 45 hours

Text Book(s)					
1.	Metha M.L., SR.Verma, K Mishra and VK Sharma. 1995. Testing and Evaluation of Agricultural Machinery, National Agricultural Technology Information Centre, Ludhiana				
2.	Indian Standards Test Codes related to tractors, power tillers and agricultural implements				
Refer	ence Books				
1.	Anonymous. 1983. RNAM Test Codes & Procedures for Farm Machinery. Technical Series				
2.	Nebraska Tractor Test Codes for Testing Tractors, Nebraska, USA.				

Course	Code	Course Title	L	T	P	J	С		
22AGP	PE13	BIOCHEMICAL AND THERMOCHEMICAL CONVERSION OF BIOMASS	3	0	0	0	3		
Pre-requisite Sylla						v. '	1.0		
			vC	1010					
Course (Course Objectives:								
1. To expose the students with different bio and thermal conversion of biomass									
Course (Outcom	10:							
• B	iomass	identification and classes							
• B	iomass	characters and biochemical conversion.							
• TI	hermo (chemical conversion techniques and cogeneration from	was	te					
• T	o know	about application of biomass conversion							
• A	nalyse	the energy generated from waste							
Unit-1		BIOMASS CHARACTERIZATION			9 h	ours	5		
Biomass	– type	s - fuels from biomass. Terms and units used in bi	oma	SS	proc	lucti	on.		
Biomass	fuel ch	aracterization – physical, chemical and thermal – ener	gy re	elea	ase.	Sup	ply		
chain - harvesting / collection - transportation and processing. Briquetting - types -									
pelletizing.									
Unit-2		BIOCHEMICAL CONVERSION			9 h	ours	5		

Biochemical degradation – factors affecting biogas production - types of biogas plants – construction details – operation and maintenance – utilization of biogas - slurry handling, utilization and enrichment – high rate biomethanation process – landfills – bioethanol – feedstock – process – utilization - composting - methods – machinery.

Unit-3 THERMO CHEMICAL CONVERSION BY COMBUSTION 9 hours

Thermochemical degradation. stoichiometric air requirement - Combustion process – chemistry of combustion - combustion zones - emissions. Cofiring of biomass. Incinerators - layout. Combustion of wastes and MSW. Wood burning stoves - types- operation.

Unit-4 THERMOCHEMICAL CONVERSION BY GASIFICATION AND 9 hours PYROLYSIS

Biomass gasification – chemistry of gasification – types of gasifier – Gas cleaning & conditioning - utilization of producer gas - emissions – commercial gasifies plants. Pyrolysis – product recovery – types - biochar – bio oil – operation – recovery.

Unit-5	COGENERATION AND WASTE HEAT RECOVERY	9 hours
Cogenera	ation technologies – cycles – topping – bottoming – problems – ap	plications -
selection	Waste heat recovery - plate heat exchangers - waste heat boilers - he	eat pumps -

thermic fluid heaters - selection of waste heat recovery.

Total Lecture hours: 45 hours

Text Book(s)

 Chawla, O.P.1986. "Advances in Biogas Technology". ICAR Publication, New Delhi
 Rao. S and B.B. Parulekar. 2000. Energy Technology – Non conventional, Renewable and Conventional. Khanna Publishers, New Delhi.

Reference Books

1.	Khandelwal K.C. and Mahdi, S.S. 1986. Biogas Technology. Tata Mc Graw Hill Pub.
	Co. Ltd., New Delhi.
2	Srivastava, P.K., Shukla, B.D. and Ojha, T.P. 1993. Technology and application of
2.	biogas. Jain Brothers, New Delhi.
0	Mathur, A.N. and Rathore, N.S. 1993., Biogas production Management and Utilisation.
з.	Himanshu Publication. New Delhi.

Chakraverty, A. 1993. Biotechnology and other alternate technologies for utilisation of biomass. Oxford and IBH Publishing Co., New Delhi.

Course Code	Course Title	L	Т	Ρ	J	С
22AGPE14	WASTE AND BY PRODUCT UTILIZATION	3	0	0	0	3
Pre-requisite		Sy ve	llab rsio	ous on	v. ´	1.0

Course Objectives:

1. To expose the students with different by-products of food industry and waste water management of any industry.

Course Outcome:

- Types of waste and influences
- Waste water management from any food industry.
- By product utilization from processing plants of cereals, pulses
- Hands on training in wastewater treatment process
- Advance procession techniques for waste water treatment.

INTRODUCTION TO WASTE WATER TREATMENT 9 hours

Types and formation of by-products and waste; magnitude of Waste generation in different food processing industries; concept scope and maintenance of waste management and effluent treatment

Unit-2

Unit-1

CHEMICAL PROPERTIES

9 hours

Temperature, pH, Oxygen demands (BOD, COD), fat, oil and grease content, metal content, forms of phosphorous and sulphur in waste waters, microbigy of waste, other ingredients like insecticide, pesticides and fungicides residues.

Unit-3

BY-PRODUCTS UTILIZATION

9 hours

Waste utilization in various industries, furnaces and boilers run on agricultural wastes and byproducts, briquetting of biomass as fuel, production of charcoal briquette, generation of electricity using surplus biomass, producer gas generation and utilization, waste treatment and disposal, design, construction, operation and management of institutional community and family size biogas plants, concept of vermi-composting

Curriculum and Syllabus | B.Tech - Agricultural Engineering | R2022 | Page | 126

4.

Unit-4	PROCESSING TECHNIQUES	9 hours				
Pre-treatment of waste: sedimentation, coagulation, flocculation and floatation, Secondary-						
treatm	ents: Biological and chemical oxygen demand for different food plant was	ste- trickling				
filters,	oxidation ditches, activated sludge process, rotating biological contractor	ors, Tertiary				
treatm	ents.					
Unit-5	ADVANCED WASTE WATER TREATMENT PROCESSES	9 hours				
Sand,	coal and activated carbon filters, phosphorous, sulphur, nitrogen and he	eavy metals				
remov	al, Assessment, treatment and disposal of solid waste; and biogas gener	ation.				
	Total Lecture hours:	45 hours				
Text E	sook(s)					
4	Huang, R.T. 1982. Compost Engineering: Principles and Practices.Jol	nn Willey &				
١.	Sons, New York.					
Reference Books						
1.	Standards, ASAE: Manure Production and Characteristics. ASAE, New	/ork.				
	2. USDA: Agricultural Waste Management Field Hand Book, New York, USA.					
2.	USDA. Agricultural Waste Management Field Hand Book, New York, US	JA.				

Course Code	Course Title	L	Т	Ρ	J	С
22AGPE15	HUMAN ENGINEERING AND SAFETY IN FARM MACHINERY OPERATIONS	3	0	0	0	3
Pre-requisite		Sy ve	llab rsio	ous on	v. ´	1.0

1. To impart the fundamental knowledge to the student on the importance of human engineering and safety in the field of agriculture machinery.

Course Outcome:

- Understand the importance of human factors and their application in system development.
- Know the effect of visual, auditory and factual displays in human performance.
- Understand the importance of optimum work-rest cycles in endurance.
- Be able to ideally design the work space in accordance to anthropometry.

•	Have the general understanding safety features and regulation ad	cts in farm
	machinery	
Unit-1	ERGONOMICS	9 hours
Ergono	mics- introduction- Role of ergonomics in Agriculture - Human metaboli	ism- energy
liberatio	on in human body- Types of human metabolism- energy requirement	s at work -
accepta	able work load	
		1
Unit-2	PHYSIOLOGICAL FUNCTIONS	9 hours
Human	Skeletal system – muscle, structure and function - Physiological stress	- Efficiency
of wor	k -Physical functions - Age and individual differences in physical	I functions-
Physiol	ogical and operational criteria of physical activity.	
Unit-3	ENERGY EXPENDITURE	9 hours
Energy	expenditure of activities-keeping energy expenditure within bound	ds- Energy
expend	iture of Spraying-Weeding operations - Movements of body members- S	Strength and
endura	nce of movements - Movement of body members related to Agricultura	l activities -
Speed	and accuracy of movements - Time and distance of movements - React	ion time
Unit-4	ANTHROPOMETRY	9 hours
Anthrop	pometry – introduction- Types of data- Principles of applied anthropomet	ry - concept
of perc	entile – Normal distribution – Estimating the range – Minimum and	d Maximum
dimens	ions Cost benefit analysis - applications of anthropometric data. Ant	hropometric
conside	eration in tool / equipment design.	
Unit-5	HUMAN SAFETY	9 hours
Danger	ous machine (Regulation) act, Rehabilitation and compensation to accic	lent victims,
Safety	gadgets for spraying, threshing, Chaff cutting and tractor & trailer operat	ion etc.
	Total Lecture hours:	45 hours
Text B	pok(s)	1
4	Ernest and Mc Cormick, E.L. (1970). Human factors in engineering and	design. Mc
1.	Graw Hill Co., New York	

r	
2.	Grandjean, E. (1988). Fitting the task to the man. Taylor and Francis, London
	Liljedhal, J.B, Carleton, W.M, Smith, P.K and David, M. (1978). Tractors and power
3.	units John Wiley and sons. New York
1	Murrel, K.H.F. (1978). Ergonomics, Man in his working environment. Chapman and
4.	Hall, London.
Refer	ence Books
1.	Astrand, O.P and Rodhal, J. (1977). Work Physiology. Mc Graw hill Co. New York.
2.	http://www.derby.ac.uk/online/course/ergonomics-msc
2	http://www.opling.colostate.odu/cortificates/orgonomics/
J.	http://www.ormine.colostate.edu/certincates/ergonomics/

Course Code	Course Title	L	Τ	Ρ	J	С
22AGPE16	PRECISION FARMING EQUIPMENT	3	0	0	0	3
Pre-requisite		Sy ve	llab rsio	ous on	v. ´	1.0

1. To learn about the fundamentals of precision farming principles and application of precision farming equipment

Course Outcome:

- Understand the role of electronics in precision farming
- Analyse the principles and applications of sensors, micro controllers and actuators in precision farming equipment
- Understand the precision farming concepts and machinery
- Understand about site specific management system and unmanned vehicles & IoT applications
- Analyse the application of sensors and electronics in farm machinery

Unit-1 ROLE OF ELECTRONICS IN AGRICULTURAL ENGINEERING 9 hours

Role of electronics in agricultural engineering for precision agriculture. Basics of precision agriculture, tools for implementation of precision agriculture. Introduction of GIS/GPS positioning system for precision farming. Use of GIS and GPS in farm machinery and equipment.

Unit-2	SENSORS, MICROCONTROLLER AND ACTUATOR FOR	9 hours					
	PRECISION AGRICULTURE						
Types	Types of sensor- principle and concept of different sensor like ultrasonic, proximity, PIR, IR,						
radar,	pressure, gas, temperature, moisture, strain /weight, colour sensor e	tc. used in					
agricult	ure. Microcontroller: Arduino, Raspberry Pi and PLC Actuator: DC Mo	otor, Pump,					
linear A	Actuator etc Basic input circuits and signal conditioning systems - am	plifiers and					
filters.							
Unit-3	PRECISION FARMING CONCEPTS AND PRECISION FARMING	9 hours					
	MACHINERY						
Precisi	on farming concepts- Map based system- Real time system – Combination	on Map and					
real tin	ne system -components of PF – Site specific management- Constra	ints of PF-					
Precisi	on tillage, planting, intercultural, plant protection and harvesting equip	ment, laser					
guided	leveller, power sprayer, straw chopper cum spreader, straw baile	r, combine					
harves	er etc.						
Unit-4	SITE-SPECIFIC MANAGEMENT SYSTEM	9 hours					
Unit-4 Site-sp	SITE-SPECIFIC MANAGEMENT SYSTEM ecific nutrient management- weeds management- Agro-chemicals a	9 hours nd fertilizer					
Unit-4 Site-sp manag	SITE-SPECIFIC MANAGEMENT SYSTEM ecific nutrient management- weeds management- Agro-chemicals a ement, data sources and decision making for site-specific managem	9 hours nd fertilizer nent. Grain					
Unit-4 Site-sp manag quality	SITE-SPECIFIC MANAGEMENT SYSTEM ecific nutrient management- weeds management- Agro-chemicals a ement, data sources and decision making for site-specific managen and yield. Yield monitoring and mapping, soil sampling and analysis.	9 hours nd fertilizer nent. Grain					
Unit-4 Site-sp manag quality	SITE-SPECIFIC MANAGEMENT SYSTEM ecific nutrient management- weeds management- Agro-chemicals and ement, data sources and decision making for site-specific managem and yield. Yield monitoring and mapping, soil sampling and analysis.	9 hours nd fertilizer nent. Grain					
Unit-4 Site-sp manag quality Unit-5	SITE-SPECIFIC MANAGEMENT SYSTEM ecific nutrient management- weeds management- Agro-chemicals a ement, data sources and decision making for site-specific managen and yield. Yield monitoring and mapping, soil sampling and analysis. UNMANNED VEHICLES AND IOT IN AGRICULTURE	9 hours nd fertilizer nent. Grain 9 hours					
Unit-4 Site-sp manag quality Unit-5 UAV -E	SITE-SPECIFIC MANAGEMENT SYSTEM ecific nutrient management- weeds management- Agro-chemicals and ement, data sources and decision making for site-specific managem and yield. Yield monitoring and mapping, soil sampling and analysis. UNMANNED VEHICLES AND IOT IN AGRICULTURE Prones- Types - applications – rules and regulations – Autonomous grou	9 hours nd fertilizer nent. Grain 9 hours nd vehicles					
Unit-4 Site-sp manag quality Unit-5 UAV -E – Robo	SITE-SPECIFIC MANAGEMENT SYSTEM ecific nutrient management- weeds management- Agro-chemicals at ement, data sources and decision making for site-specific managen and yield. Yield monitoring and mapping, soil sampling and analysis. UNMANNED VEHICLES AND IOT IN AGRICULTURE Drones- Types - applications – rules and regulations – Autonomous grout tics- platforms and unmanned agricultural vehicles- IoT - crop yield estim	9 hours nd fertilizer nent. Grain 9 hours nd vehicles ates- threat					
Unit-4 Site-sp manag quality Unit-5 UAV -E – Robo identific	SITE-SPECIFIC MANAGEMENT SYSTEM ecific nutrient management- weeds management- Agro-chemicals at ement, data sources and decision making for site-specific managen and yield. Yield monitoring and mapping, soil sampling and analysis. UNMANNED VEHICLES AND IOT IN AGRICULTURE Prones- Types - applications – rules and regulations – Autonomous grou tics- platforms and unmanned agricultural vehicles- IoT - crop yield estim cation- crop insurance-pesticides spraying, environmental monitoring	9 hours nd fertilizer nent. Grain 9 hours nd vehicles ates- threat - protected					
Unit-4 Site-sp manag quality Unit-5 UAV -E – Robo identific cultivat	SITE-SPECIFIC MANAGEMENT SYSTEM ecific nutrient management- weeds management- Agro-chemicals at ement, data sources and decision making for site-specific managem and yield. Yield monitoring and mapping, soil sampling and analysis. UNMANNED VEHICLES AND IOT IN AGRICULTURE Prones- Types - applications – rules and regulations – Autonomous grou tics- platforms and unmanned agricultural vehicles- IoT - crop yield estim cation- crop insurance-pesticides spraying, environmental monitoring ion food quality monitoring etc.	9 hours nd fertilizer nent. Grain 9 hours nd vehicles ates- threat - protected					
Unit-4 Site-sp manag quality Unit-5 UAV -E – Robo identific cultivat	SITE-SPECIFIC MANAGEMENT SYSTEM ecific nutrient management- weeds management- Agro-chemicals at ement, data sources and decision making for site-specific managem and yield. Yield monitoring and mapping, soil sampling and analysis. UNMANNED VEHICLES AND IOT IN AGRICULTURE Prones- Types - applications – rules and regulations – Autonomous grout tics- platforms and unmanned agricultural vehicles- IoT - crop yield estime cation- crop insurance-pesticides spraying, environmental monitoring ion food quality monitoring etc. Total Lecture hours:	9 hours nd fertilizer nent. Grain 9 hours nd vehicles ates- threat - protected 45 hours					
Unit-4 Site-sp manag quality Unit-5 UAV -E – Robo identific cultivat	SITE-SPECIFIC MANAGEMENT SYSTEM ecific nutrient management- weeds management- Agro-chemicals and ement, data sources and decision making for site-specific management and yield. Yield monitoring and mapping, soil sampling and analysis. UNMANNED VEHICLES AND IOT IN AGRICULTURE Prones- Types - applications – rules and regulations – Autonomous grout tics- platforms and unmanned agricultural vehicles- IoT - crop yield estime cation- crop insurance-pesticides spraying, environmental monitoring ion food quality monitoring etc. Total Lecture hours: pok(s)	9 hours nd fertilizer nent. Grain 9 hours nd vehicles ates- threat - protected 45 hours					
Unit-4 Site-sp manag quality Unit-5 UAV -E – Robo identific cultivat Text B	SITE-SPECIFIC MANAGEMENT SYSTEM ecific nutrient management- weeds management- Agro-chemicals at ement, data sources and decision making for site-specific managen and yield. Yield monitoring and mapping, soil sampling and analysis. UNMANNED VEHICLES AND IOT IN AGRICULTURE Prones- Types - applications – rules and regulations – Autonomous grou tics- platforms and unmanned agricultural vehicles- IoT - crop yield estim cation- crop insurance-pesticides spraying, environmental monitoring ion food quality monitoring etc. Total Lecture hours: pok(s) Brase, T.A. 2006. Precision Agriculture. Thomson Delmar Learning, New	9 hours nd fertilizer nent. Grain 9 hours nd vehicles ates- threat - protected 45 hours					
Unit-4 Site-sp manag quality Unit-5 UAV -E – Robo identific cultivat Text B 1.	SITE-SPECIFIC MANAGEMENT SYSTEM ecific nutrient management- weeds management- Agro-chemicals at ement, data sources and decision making for site-specific managen and yield. Yield monitoring and mapping, soil sampling and analysis. UNMANNED VEHICLES AND IOT IN AGRICULTURE Drones- Types - applications – rules and regulations – Autonomous grou tics- platforms and unmanned agricultural vehicles- IoT - crop yield estim cation- crop insurance-pesticides spraying, environmental monitoring ion food quality monitoring etc. Total Lecture hours: pok(s) Brase, T.A. 2006. Precision Agriculture. Thomson Delmar Learning, New Hermann, J.H. 2013. Precision in Crop Farming, Site Specific Concepts a	9 hours nd fertilizer nent. Grain 9 hours nd vehicles ates- threat - protected 45 hours w York.					
Unit-4 Site-sp manag quality Unit-5 UAV -E – Robo identific cultivat Text B 1. 2.	SITE-SPECIFIC MANAGEMENT SYSTEM ecific nutrient management- weeds management- Agro-chemicals a ement, data sources and decision making for site-specific managen and yield. Yield monitoring and mapping, soil sampling and analysis. UNMANNED VEHICLES AND IOT IN AGRICULTURE Drones- Types - applications – rules and regulations – Autonomous grou tics- platforms and unmanned agricultural vehicles- IoT - crop yield estim cation- crop insurance-pesticides spraying, environmental monitoring ion food quality monitoring etc. Total Lecture hours: Dok(s) Brase, T.A. 2006. Precision Agriculture. Thomson Delmar Learning, New Hermann, J.H. 2013. Precision in Crop Farming, Site Specific Concepts a Methods: Applications and Results. Springer, Netherlands.	9 hours nd fertilizer nent. Grain 9 hours nd vehicles ates- threat - protected 45 hours w York. and Sensing					

	and Crop Management. Apple Academic Press			
	Srivastava, A K., Carroll E.G., Roger P. R. and Dennis R.B.2006. Engineering			
4.	Principles of Agricultural Machines. American Society of Agricultural and Biological			
	Engineers, USA.			
5	Zhang, Q. 2015. Precision Agriculture Technology for Crop Farming. CRC Press,			
5.	New York.			
Refer	Reference Books			
1	Sahay, K.M. and Singh, K.K. 1994. Unit Operation of Agricultural Processing. Vikas			
1.	Publ. House			
2	Michael, A.M. 2007. Irrigation: Theory and Practice. Vikash Publishing House Pvt.			
Ζ.	Ltd., New Delhi			
3.	Rai G.D. 1994. Non-conventional sources of energy. Khanna Publishers, Delhi			
4	Kepner, R.A., Bainer, R. and Berger, E.L. 1978. Principles of Farm Machinery.AVI			
4.	Publ.			

Course Code	Course Title	L	Т	Ρ	J	С
22AGPE17	SOLAR AND WIND ENERGY SYSTEM	3	0	0	0	3
Pre-requisite		Sy ve	llab rsio	ous on	v. ´	1.0

- 1. To learn about the fundamental aspects of solar energy availability, solar energy conversion technologies
- 2. To understand about the fundamental aspects of wind energy availability and wind power generators
- 3. To acquire the knowledge on the alternate sources of energy such as geothermal energy, wave ene`rgy, tidal energy, OTEC energy, fuel cells and energy storage

Course Outcome:

- Understand the basics of solar energy and solar thermal energy conversion technologies and compare direct mode and indirect mode solar dryers
- Analyse the principles and applications of solar thermal power stations, solar pond, and solar stills
- Understand the wind power laws and calculate the torque and power characteristics of wind energy

- Design wind mills and test the units for certification
- Understand the principles of geothermal energy, wave energy, tidal energy, OTEC energy, fuel cells and analyse their applications

Unit-1 SOLAR ENERGY RADIATION AND SOLAR THERMAL COLLECTORS

9 hours

9 hours

Solar radiation availability - radiation measurement -transmittance - absorptance flat plate collectors - heat transfer correlations - collector efficiency - heat balance -absorber plate - types - selective surfaces. Solar driers types heat transfer performance of solar dryers agro industrial applications

Unit-2 SOLAR CONCENTRATING COLLECTORS AND PV TECHNOLOGY

Optically concentrating collectors- types reflectors - solar thermal power stations principle and applications - solar stills- types- solar pond performance- characteristics applications. Photovoltatics types characteristic- load estimation batteries invertors operation system controls. PV system installations standalone systems- PV powered water pumping system sizing and optimization hybrid system solar technologies in green buildings.

Unit-3 WIND MAPPING ANALYSIS AND CHARACTERISTICS OF WIND 9 hours

Nature of wind - wind structure and measurement - wind power laws - velocity and power duration curves- aero foil - tip speed ratio - torque and power characteristics power coefficients - Betz coefficient

Unit-4

WIND MILL DESIGN AND APPLICATIONS

9 hours

Turbines- Wind mill - classification - power curve. Upwind and downwind systems - transmission rotors - pumps - generators - standalone system - grid system -batteries. Wind energy storage - wind farms - wheeling and banking - testing and certification procedures.

Unit-5

ALTERNATE ENERGY SOURCES

9 hours

Ocean energy - off shore and on shore ocean energy conversion technologies - OTEC principles - open and closed cycles. Tidal energy - high and low tides - tidal power - tidal energy conversion. Geothermal energy - resources - classification and types of geothermal power plants. Nuclear energy - reactions -fusion, fission, hybrid reactors. Fuel cell - principle and operation - classification and types. Energy storage- pumped hydro and underground pumped hydro - compressed air - battery - flywheel - thermal.

	Total Lecture hours: 45 hours			
Text I	Book(s)			
1.	Rai., G.D. "Solar Energy Utilization" Khanna publishers, New Delhi, 2002			
2	More, H.S and R.C. Maheshwari, "Wind Energy Utilization in India" CIAE Publication			
Ζ.	– Bhopal, 1982.			
3	Solanki, C.S. "Renewable Energy Technologies: A Practical guide for beginners".			
5.	PHI learning Pvt. Ltd, New Delhi. 2008.			
Refer	Reference Books			
1	Solanki, C.S. "Solar Photovoltaic Technology and Systems", PHI learning Pvt. Ltd.,			
1.	New Delhi, 2013.			
2	Rai. G.D. "Non-Conventional Sources of Energy", Khanna Publishers, New Delhi,			
Ζ.	2002			
2	Rao. S and B.B. Parulekar. "Energy Technology – Non conventional, Renewable			
э.	and Conventional". Khanna Publishers, Delhi, 2000			
Λ	Rajput. R.K. "Non- Conventional Energy Sources and Utilization", S. Chand &			
4.	Company Pvt. Ltd, New Delhi, 2013.			

Course Code	Course Title	L	Т	Ρ	J	С
22AGPE18	MECHANICS OF TILLAGE AND TRACTION	3	0	0	0	3
Pre-requisite		Sy ve	llab rsio	ous on	V. ¹	1.0

Course Objectives:

- To make the students to measure and utilize physical and mechanical properties of soil in order to interpret and predict the soil stress-strain behaviour.
- To enable the students to understand the concept of tillage and traction.
- To impart the knowledge on traction devices and their performances evaluation.

Course Outcome:

At the end of the Course, Student will be able to:

1.	Distinguish	various	dvnamic	properties	of soil	and their	methods of	of measurement.
			· · · · ·					

- 2. Analyze the concept of soil tool interaction.
- 3. Interpret traction mechanics and prediction models.
- 4. Classify different traction devices and their method of selection based on load and furrow type
- 5. Evaluation of traction device performance and application of GIS in soil dynamics.

Unit-1 Dynamic Properties of Soil and their Measurement

Soil physical properties, engineering properties of soil, soil dynamic characteristics, soil shear strength, soil cohesion, soil-soil friction, soli- metal friction, stress-strain relationships, measurement of soil dynamic properties, direct shear test, triaxial test, unconfined compression test and tensile test, field measurement of soil shear strength: field shear apparatus and vane shear apparatus.

Unit-2 Mechanics of Tillage Tools

9 hours

9 hours

9 hours

Geometry of soil tool system, mechanics of simple reaction in inclined, vertical, wider and narrow tools, design parameters and performance of tillage tools.

Unit-3 Traction Mechanics

Mohr- Coulomb's failure criteria, traction performance equations, traction prediction models, dimensional analysis of different variables related to soil-tyre system, soil vehicle models.

Unit-4 Introduction of traction devices

9 hours

Tyres, function, types and terminology, tyre selection, tracks, traction device at wetland condition, deflection and traction devices, soil slippage and sinkage of wheels. Ballasting and its methods.

Unit-5	E	valuatior	and prediction	of traction	performa	nce	9 hour	S
Design	of	traction	and transport dev	rices. Soil cor	npaction b	y agricultural	vehicles	and

machines. Variability and application of GIS in soil dynamics.

Total Lecture hours: 45 hours

Text Book(s)

- 1. Soil Dynamics in Tillage and Traction. Gill & Vandenberg.1968. Supdt. Of Documents, U.S. Govt. Printing Office, Washington, D.C.
- 2. Sineokov GN. 1965. Design of Soil Tillage Machines. INSDOC, New Delhi.

Reference Books

 Terzaghi K & Peck Ralph B.1967. Soil Mechanics in Engineering Practices. JohnWiley &Sons.
 Soil Dynamics in Tillage and Traction, by William R. Gill, Glen E. Vanden Berg, Agricultural Research Service,1967.

Course Code	Course Title	L	Т	Ρ	J	С	
22AGPE19	PE19TRACTOR AND FARM MACHINERY OPERATION AND MAINTENANCE3000						
Pre-requisite		Sy ve	llał ersi	ous on	v. 1.0		
Course Obje	tives:						
 To ma 	e the students familiarize with different models of tractors	, pov	ver	tille	s an	d their	
contro	5						
 To imp 	art the knowledge on pertaining to maintenance of tractor	s an	d t	heir	syste	ms.	
 To ena 	ble the students, learn about trouble shooting of all tractor	syst	em	ns ar	d rer	nedia	
measu	res.						
To imp	art the knowledge on pertaining to maintenance of Farm r	nacł	nin	ery e	quip	ment.	
Course Outco	ome:						
1. Demor	strates various makes and models of 4-wheel and 2-wh	eel	driv	ve tr	actor	s with	
their c	ntrols						
2. Explain	maintenance of various tractors and their systems.						
3. Identify	troubles in all systems of tractors and also their remedial	me	ası	ires.			
4. Identify	troubles in all farm machinery also their remedial measu	res			_		
5. Enable	s the student to establish a workshop for repairing and	mai	nta	ince	of tr	actors	
and fa	m equipment.						
Unit-1 Intr	oduction to functional system			9 h	ours		
Familiariz	ation with different makes and models of agricultural tractor	ors. I	dei	ntific	ation		
of function	al systems including fuels system, cooling system, trans	miss	sior	n sys	tem,		
steering a	nd hydraulic systems. Introduction to tractor maintenance	– pr	ec	autic	nary		
and break	-down maintenance. Tractor starting with low battery cha	rge.	Int	rodu	ction		
to trouble	shooting in tractors. Familiarization with tools for gene	eral	an	d sp	ecial		
maintena							
llnit_2	duction to schodulod maintonance and safety handli	na		0 h	ours		
Introducti	to scheduled maintenance after 100, 300, 600, 900 an	-12 -12		bou	rs of	•	
operation	Safety hints Top end overhauling Fuel saving tips Pren	arin	n ti	ne tr	actor		
for storac	e. Study of maintenance points to be checked before si	artir	nd i	a tra	ctor.		
Familiariz	ation with controls on a tractor. Safety rules and pre	ecau	tio	ns to	b be		
observed	while driving a tractor.						
Unit-3 One	ration and maintenance of tillage implements			Q h	ours	<u> </u>	
					Juis	,	
Operation	ot a tillage tool (mould-board plough/ disc plough) and the	eir a	dju	stme	ent in		
the field.	sudy of field patterns while operating a tillage implement i mounted and trail type implement to the treater. Care a	. ⊓līt nd n	uni Solu	ng ð ntorr	De-		
procedure	of agricultural machinery during operation and off-see	nu II son	R	nelli neir	ance		
maintena	ice of implements – adjustment of functional param	eter	s s	in ti	llage		
			-				

impl	implements.									
Unit-4	Init-4 Operation and maintenance of weeding equipments 9 hours									
Operation of a Weeding equipment and their adjustment in the field. Repair and maintenance procedure of weeding machinery during operation and off-season. Operation of a Plant protection equipment and their adjustment in the field. Repair and maintenance procedure of plant protection equipment during operation and off-season.										
Unit-5	Adjustment and maintenance of harvesting equipment	9 hours								
Adju impl type	istments in a thresher for different crops, maintenance of V-be ements. General maintenance of the combine harvesters (track and). Setting of agricultural machinery workshop.	elts on I wheel								
	Total Lecture hours:	45 hours								
Text Bo	ok(s)									
1. 0	hosh RK and S Swan. Practical Agricultural Engineering.									
2. J	ain SC and CR Rai. Farm Tractor Maintenance and Repair.									
Reference Books										
1. F	Farm Tractor Maintenance and Repair. Jain S.C. and Roy C.R. Tata McGraw-HillPublishing Co. Ltd., New Delhi.									
2. S	outhern N. Tractor operation and maintenance									

Course Code	Course Title	L	Т	Ρ	J	С			
22AGPE20	HYDRAULIC DRIVES AND CONTROL	3	0	0	0	3			
Pre-requisite		Syllabus version		V.	. 1.0				
Course Objectives:									

• To make the students for knowing the basic concepts of hydraulic system.

- To provide an understanding of energy transfer in hydraulic actuators and motors.
- To provide the knowledge about controlling components of hydraulic systems.
- To impart the knowledge on designing of hydraulic system and working of various hydraulic devices.

Course Outcome:

- 1. Understand the fundamental concepts of hydraulic system.
- 2. Explain basic components in hydraulic system.
- 3. Identify various hydraulic control valves, accessories and their applications.
- 4. Analyze the hydraulic circuit design.

5. E	xplain the maintenance of hydraulic system.					
Unit-1 Fluid pow definition	Fundamentals of Hydraulics ver - history, concept and definition. Hydrostatics and hydrodynamics s. Interrelationships of various terms (properties) used in hydra	9 hours - concepts and aulics.				
Governin properties limitations	g laws of fluid flow - Pascal's Law, continuity equation. Hydraulic s and their advantages and limitations. Hydraulic systems - applicatic s, Color Coding, Reservoirs, Strainers and Filters, Filtering Material an	d Elements.				
Unit-2	Basic components in Hydraulic system:	9 hours				
Hydrauli gear pum pumps. Hydrauli Maintena Hydrauli Hydraulic	 c pumps: Pumping theory, classification of pumps- positive and non- ip, vane pump, piston pump, pump performance and selection. Variable c Actuators: Hydraulic Actuators, Cylinders, Construction and nce. c Motors: Hydraulic rotary actuators, gear motor, vane motor and motor performance characteristics - torque, speed, power and flow characteristics 	positive types displacement Applications, piston motor. nart.				
Unit-3	Classification of hydraulic control valves	9 hours				
Valves, F Installatic Hydraulic Institute U Hydrauli filters, so manifolds	Valves, Pressure-Control Valves, Directional- Control Valves, Flow-Control Valves, Valve. Installation, Valve Failures and Remedies, Valve Assembly, Troubleshooting of Valves Hydraulic Circuit Diagrams and Troubleshooting, United States of American Standards Institute USASI Graphical Symbols, Tractor hydraulics, nudging system. Hydraulic Accessories : Types, construction, working and applications; strainers and filters, seals (static and dynamic), hydraulic reservoirs, hydraulic accumulators, manifolds, heat exchangers, oil level and pressure indicators					
Unit-4	Hydraulic Circuit Design:	9 hours				
Hydraulic circuit design and analysis: Simple hydraulic circuits – single and double acting hydraulic cylinders, regenerative circuit, pump unloading circuit, counter balance valve application, hydraulic cylinder sequencing circuits. Cylinder synchronizing circuits, speed control of hydraulic cylinders, speed control of hydraulic motors, accumulators. Pneumatics: Air services, logic units, Fail safe and safety systems Robotics: Application of Hydraulics and Pneumatics drives in agricultural systems, Programmable Logic Controls (PLCs).						
Unit-5	Application of Hydraulic Devices:	9 hours				
Hydraulic devices: Automotive hydraulic brake, industrial fork lift, hydraulic jack, hydraulic press, automotive power steering and hydraulic lift - Working principle, construction and application. Hydraulic hitch, Automatic Draft and Depth Control (ADDC).						

Maintenance of hydraulic systems: Hydraulic oils, desirable properties, general type of fluids, sealing devices, reservoir systems, filters and strainers, problems caused by gases in hydraulic fluids, wear of moving parts due to solid particle contamination, temperature control and troubleshooting.

Total Lecture hours: 45 hours

Text E	look(s)						
1.	Power Hydraulics by Michael J. Pinches John G. Ashby, PrenticeHall International,						
	1996.						
2	Fluid Power with applications, Anthony Esposito, Pearson education, Inc., 5th Edition,						
Ζ.	2000.						
Refer	Reference Books						
1.	Pneumatics and Hydraulics, Andrew Parr, Jaico Publishing Co, 2000.						
0	Hydraulics and Pneumatics, Dr. Niranjan Murthy and Dr. R. K. Hegde, Sapna						
۷.	Publications, 2013.						

VERTICAL 3: WATER MANAGEMENT AND PROTECTED CULTIVATION

Course	Code	Course Litle									
22AGP	E21	WATERSHED PLANNING AND MANAGEMENT	3	0	0	0 0					
Pro-rog	Pre-requisite Syllabus										
1 IC-ICQ	uisite		version								
Course C	Objecti	ves:									
1. T	o prov	ide the technical know-how of analysing the degrada	tion	of	soil	and	water				
re	esource	es and implementation of the measures for soil and wate	er co	nse	ervat	ion.					
2. T	o prov	ide a comprehensive treatise on the engineering pr	actio	ces	of	wate	ershed				
n	nanage	ment for realizing the higher benefits of watershed mana	agen	nen	t						
Course C	Dutcon	ne:									
1. TI	he stud	ents will able to describe the watershed management co	once	pts							
2. TI	he stud	ents will able to describe the components involved in wa	aters	heo	d pla	nnin	g				
3. TI	he stud	ents will able to describe the methods of water harvesting	ng st	ruc	tures	S					
4. TI	he stud	ents will able to design and construct the soil conservat	ion s	truc	cture	s					
5. TI	he stud	ents will able to prioritize and execute the watershed dev	velop	ome	ent p	rogr	amme				
Unit-1		INTRODUCTION			9 h	ours	5				
Watershe	ed – De	efinition - concept - Objectives – Land capability class	sifica	atio	n - ۱	Nate	ershed				
Based Land Use Planning-Watershed Characteristics: Classification and Measurement- priority											
watersheds - land resource regions in India- Importance of Watershed Properties for Watershed											
Management.											
Unit-2		WATERSHED PLANNING			9 h	ours	5				

Impor Water Prepa – sele	ance of Watershed Planning - Utility of Hydrologic Data in Watersh shed Delineation - Planning principles – collection of data – prese ration of watershed development plan - Estimation of costs and benefits ction of implementation agency - Monitoring and evaluation system	ned Planning - ent land use - - Financial plan					
Unit-3	WATERSHED MANAGEMENT	9 hours					
Participatory watershed Management - run off management - Factors affecting runoff - Temporary & Permanent gully control measures - Water conservation practices in irrigated lands - Soil and moisture conservation practices in dry lands							
Unit-4	WATER CONSERVATION PRACTICES	9 hours					
In-situ catchr Desig suppr	In-situ & Ex-situ moisture conservation principle and practices - Afforestation principle - Micro catchment water harvesting - Ground water recharge – percolation ponds -Water harvesting Design of Water Harvesting Structures - Farm pond - Supplemental irrigation - Evaporation suppression - Seepage reduction						
Unit-5	WATERSHED DEVELOPMENT PROGRAMME	9 hours					
Devel in Indi rural sensir	opment Programme for Rainfed Agriculture (NWDPRA) - Other similar pro a – Govt. of India guidelines on watershed development programme - Wa development – infrastructure development - Use of Aerial photograph ag in watershed management - Role of NGOs in watershed development. Total Lecture hours:	ojects operated atershed based y and Remote 45 hours					
Text I	Book(s)						
1.	Suresh, R. 2005. Soil and Water Conservation Engineering, Standar Distributors, New Delhi.	d Publishers &					
2.	Ghanshyam Das, "Hydrology and Soil Conservation Engineering", Prent Private Limited, New Delhi, 2000.	ice Hall of India					
Refer	ence Books						
1.	1. Gurmel Singh et al. 2004. Manual of soil and water conservation practices. Oxford & IBH publishing Co. New Delhi						
2.	Suresh, R. 2008. Land and water management principles, Standard Distributors, New Delhi	d Publishers &					
3.	Tripathi R.P. and H.P.Singh 2002, Soil erosion and conservation, Wille New Delhi	ey Eastern Ltd.,					

Course Code	Course Title	L	Τ	Ρ	J	С
22AGPE22	GROUNDWATER AND WELL ENGINEERING	3	0	0	0	3
Pre-requisite		Sy ve	llab rsio	ous on	V	. 1.0

To acquaint and equip the students with the techniques of groundwater development and management

Course Outcome:

- 1. The students will be able to describe the concepts of aquifer parameters
- 2. The students will be able to describe the components involved in Groundwater structures
- 3. The students will be able to describe the Groundwater development and quality considerations
- 4. The students will be able to describe the Management of declining and rising water table
- 5. The students will be able to prioritize and execute the Groundwater development programme

Unit-1

GROUND WATER OCCURRENCE

9 hours

Occurrence of groundwater, temporal and spatial variability of groundwater, methods for groundwater exploration, determination of aquifer parameters, pumping tests, assessment of groundwater potential

Unit-2

WELL CONSTRUCTION

9 hours

Groundwater structures, groundwater development and utilization, types of water wells, design and construction of water wells, drilling methods, well development, well maintenance and rehabilitation, groundwater monitoring, monitoring wells, design and construction of monitoring wells

Unit-3

GROUNDWATER POLLUTION

9 hours

Groundwater development and quality considerations, groundwater contamination, sources and causes of groundwater pollution, contaminated systems and their rehabilitation, groundwater bioremediation, management of salt water ingress in inland and coastal aquifers.

Unit-4

GROUNDWATER MANAGEMENT

9 hours

Management of declining and rising water table, Natural and artificial groundwater recharge, Groundwater recharge basins and injection wells. Groundwater management in irrigation command, conjunctive water use, water lifting, different types of pumps, selection of pumps, pump characteristics curve, cost of groundwater pumping, comparative economics of surface and groundwater use for irrigation

Unit-5

GROUNDWATER DEVELOPMENT POLICIES

9 hours

Major issues related to groundwater development and management in India, Legal aspects of groundwater exploitation, Diagnostic survey of sick wells/tube wells and their rehabilitation.

Total Lecture hours: 45 hours

Text E	Book(s)							
1.	Walton, W.C. 1976. Groundwater Resource Evaluation. Mc Graw Hill. New York							
2.	Karanth, K.R. 1987. Groundwater Assessment, Development and Management. Tatamcgraw Hill. New Delhi.							
Refer	Reference Books							
1.	Michael, A.M. and Khepar, S.D. 1989. Water Well and Pump Engineering. Tata-mcgraw Hill Publ. Co. New Delhi.							
2.	Giordano, M. and Villholth, K.G. 2007. The Agricultural Groundwater Revolution Volume 3.							
3.	CABI Head Office, Nosworthy Way, Wallingford, Oxfordshire, OX10 8DE, UK Ghosh, N.C. and Sharma, K.D. 2006. Groundwater Modelling and Management							

Course Code	Course Title	L	Т	Ρ	J	С
22AGPE23	DESIGN OF MICRO-IRRIGATION SYSTEM	3	0	0	0	3
Pre-requisite		Sy ve	llab ersio	ous on	V	. 1.0

- 1. To understand the basic concepts, tools, and skills used to deliver water efficiently and effectively on both a field and garden scale efficiency
- 2. To learn about the role of irrigation water in agriculture, and the environmental factors that influence the type, frequency, and duration of irrigation
- 3. To learn about the resources and essential skills needed to determine the proper timing and volume of irrigation, using both qualitative and quantitative methods

Course Outcome:

- 1. Categorize the different types of pumps and water lifting devices based on the principle, components, and working efficiency
- 2. Explain the working principle of centrifugal pump as well as its characteristics with efficiencies and design the centrifugal pump including impeller design, casing and other parts of pumps.
- 3. Estimate water budgets and hydraulics used to develop irrigation schedules through micro irrigation based on crop geometry
- 4. Design drip and sprinkler irrigation system including, main line, sub main and laterals designs by consider pump capacity
- 5. Design greenhouse irrigation system and advanced types of irrigation including lift irrigation and automation

Unit-1 MICRO IRRIGATION CONCEPT AND APPLICATIONS 9 hours

Micro irrigation -Merits, demerits, types and components of micro irrigation system- Present status, Scope and potential problem of micro irrigation - Micro-irrigation applications: Hills, arid lands, coastal and wastelands, Financial Assistance for Promotion of Micro Irrigation in India.

Unit-2	2	DRIP IRRIGATION DESIGN	9 hour					
Drip	Drip irrigation - Components- Dripper- types and equations governing flow throug							
drippersWetting pattern- Chemigation application- Pump capacity -Installation- Operation and								
mainte	enance of	Drip irrigation system Design of surface and sub-surface dr	ip irrigat	ion.				
Unit-3	5	SPRINKLER IRRIGATION DESIGN	9 no	9 nours				
Sprink	kler irrigatio	n- Components and accessories - Hydraulic design - Sprink	der seled	ction and				
spacir	ng- Capaci	ty of sprinkler system - types - Sprinkler performance- Spr	inkler di	scharge-				
Water	distributio	n pattern- Droplet size, filtering unit, fertigation - System main	ntenance	3				
	- 1							
Unit-4	1	ECONOMIC ANALYSIS	9 ho	urs				
Stand	ardization	and Quality Assurance of Micro Irrigation System Componen	ts. Term	inologies				
in Eco	onomic An	alysis, Optimal Flow Criterion for Economic Drip Irrigation	Pipes S	election,				
Econo	omic Viabil	ty of Micro Irrigation in Different Crops.						
Unit-5		AUTOMATION IN MICRO IRRIGATION	9 ho	urs				
Autom	nation, Ne	ed for Automation of Irrigation, Merits and Demerits	of Aut	omation,				
Semia	automatic	and Fully Automatic Systems of Automation, Component	s of Au	tomation				
Syster	m, Types o	t Controls and Automation in Micro Irrigation						
		Total Lecture hours	: 45 ho	ours				
Text Book(s)								
	Suresh	R "Principles of Micro-Irrigation Engineering" Stan	dard P	ublishers				
1.	Distributo	rs.New Delhi. 2010						
2.	Michael, A.M., "Irrigation Theory and Practice". Vikas Publishers. New Delhi, 2002.							
Reference Books								
1.	Modi, P.	Modi, P.N., and Seth, S.M., "Hydraulics and Fluid Mechanics", Standard Book House,						
	New Delhi, 1991.							
2.	Jack Keller and Rond Bellsher., Sprinkler and Frickle Irrigation", Vannistrand Reinhold,							
2	New York, 1990.							
Cour	se coue							

Course Code	Course Title	L	Т	Ρ	J	С			
22AGPE24	PROTECTED CULTIVATION	3	0	0	0	3			
Pre-requisite		Syl ve	llab rsio	ous on	V.	1.0			
Course Objectives:									
1. To impart knowledge on the protected cultivation of vegetables, fruits and flower									
crop	S.								

- 2. To sensitize the students on hi-tech production technology of fruits and vegetables and flower crops.
- 3. To learn and practices the various production practices of flower and other high value crops

Course Outcome:

- 1. The students will be able to describe the different methods of protected cultivation practices available for vegetable crops and flowers
- 2. The students will be able to assess the technology available for vegetable crops
- 3. The students will be able to assess the technology available for flower crops
- 4. The students will be able to assess precision farming techniques using sensors and Geographic information systems for the crops
- 5. The students will be able to assess the technology available for horticulture crops

Unit-1

PROTECTED CULTIVATION AND ITS TYPES

9 hours

Importance and methods of protected culture in horticultural crops. Importance and scope of protected cultivation, different growing structures of protected culture viz., green house, poly house, net house, poly tunnels, screen house, protected nursery house. Study of environmental factors influencing greenhouse production, cladding / glazing / covering material, ventilation systems, cultivation systems including nutrient film technique / hydroponics / aeroponic culture, growing media and nutrients, canopy management, micro irrigation and fertigation systems.

Unit-2 PROTECTED CULTIVATION OF VEGETABLE CROPS 9 hours Protected cultivation technology for vegetable crops: Hi-tech protected cultivation technology 9 hours

Protected cultivation technology for vegetable crops: Hi-tech protected cultivation techniques for tomato, capsicum nursery, cucumber, gherkins strawberry and melons, integrated pest and disease management, post-harvest handling.

Unit-3

PROTECTED CULTIVATION OF FLOWER CROPS

9 hours

Protected cultivation technology for vegetable crops: Hi-tech protected cultivation techniques for tomato, capsicum nursery, cucumber, gherkins strawberry and melons, integrated pest and disease management, post-harvest handling.

Unit-4

PRECISION FARMING TECHNIQUES

9 hours

Concept and introduction of precision Farming: importance, definition, principles and concepts. Role of GIS and GPS. Mobile mapping system and its application in precision farming. Design, layout and installation of drip and fertigation in horticultural crops, role of commuters in developing comprehensive systems needed in site specific management (SSM), georeferencing and photometric correction. Sensors for information gathering, geostatistics, robotics in horticulture, postharvest process management (PPM), remote sensing, information and data management and crop growth models, GIS based modeling,VRT, robotics and drones in agriculture

Unit-5 PRECISION FARMING FOR HORTICOLI URAL CROPS 9 Hours

Precision farming techniques for horticultural crops: Precision farming techniques for tomato, chilli, bhendi, bitter gourd, bottle gourd, cauliflower, cabbage, grapes, banana, rose, jasmine, chrysanthemum, marigold, tuberose, china aster, turmeric, coriander, coleus and gloriosa

Total Lecture hours: 45 hours

Text Book(s)

- 1. Joe.J.Hanan. 1998. Green houses: Advanced Technology for Protected Horticulture, CRC Press, LLC. Florida.
- 2. Paul V. Nelson. 1991. Green house operation and management. Ball publishing USA.

Reference Books

- Lyn. Malone, Anita M. Palmer, Christine L. Vloghat Jach Dangeermond. Mapping out world: GIS lessons for Education, ESRI press, 2002
 David Reed, Water, media and nutrition for green house crops. Ball publishing USA, 1996
- 3. Adams, C.R. K.M. Bandford and M.P. Early, Principles of Horticulture, CBS publishers and distributors, Darya ganj, New Delhi, 1996

Course Code	Course Title	L	Т	Ρ	J	С			
22AGPE25	ON-FARM WATER MANAGEMENT	3	0	0	0	3			
Pre-requisite		Syl ve	Syllabus version v.		. 1.0				

Course Objectives:

- 1. Understand the fundamental design of irrigation channels and diversion structures.
- 2. Study about command area development.
- 3. Know about availability and utilization of water resources.
- 4. Impart knowledge on water use efficiency.
- 5. Get an idea about automation of irrigation systems and water policies.

Course Outcome:

- 1. The students will be able to design irrigation channels and diversion structures.
- 2. The students will be able to organize the different CADA programme and involved farmers to participate
- 3. The students will be able to inspect the conjunctive use of water resources by farmers
- 4. The students will be able to identify water balance between productivity and water use efficiency in agricultural land
- 5. The students will be able to design the surface and subsurface drainage systems

Unit-1

DESIGN OF IRRIGATION CHANNELS

9 hours
Design of Erodible (earthen), Non-Erodible (lined) & Alluvial channels (pre-fabricated) - Kennedy's and Lacey's Theories; Materials for Lining watercourses and field channel; Water control and Diversion structure - Design - Land grading - Land Levelling methods.

Unit-2

COMMAND AREA

9 hours

Command area - Concept - CADA Programmes in Tamil Nadu; Duty of water expression - relationship between duty and delta; Warabandhi - water distribution and Rotational Irrigation System - Participatory irrigation management.

Unit-3 CONJUNCTIVE USE OF SURFACE AND GROUNDWATER 9 hours

Availability of water - rainfall, canal supply and groundwater - conjunctive use - crop calendar -Irrigation demand - water requirement and utilization - Prediction of over and underutilization of water - Dependable rainfall - Rainfall analysis by Markov chain method - Probability matrix.

Unit-4

WATER BALANCE

9 hours

Groundwater balance model - Weekly water balance - Performance indicators Appropriateness, Adequacy, Dependability, Equity, Reliability, Timeliness and efficiency - conjunctive use plan by optimization; Agricultural productivity indicators - Water use efficiency.

Unit-5

DESIGN OF FARM DRAINAGE SYSTEM

9 hours

Agricultural drainage – types and Concept - Issues; Principles of flow through soils - Darcy's law - drainage coefficient -Infiltration theory; Surface drainage - methods - design - Random drainage - Herringbone - Grid iron types -Design of Open Drains. Steady State flow - Dupit's Forchimer assumptions –Hooghoudt's equation; Methods & Design - Mole drains - Drainage wells - Pipe materials -Problem soils - Leaching Requirements; Land reclamation - methods of Reclamation.

Total Lecture hours: 45 hours

L

Text Book(s)

1.	Michael, A.M. 2006. "Irrigation Theory and practice", Vikas publishing house, New Delhi			
2.	Michael, A.M. and Ojha, T.P. "Principles of Agricultural Engineering -Vol II ",Jain Brothers, New Delhi,2002.			
Reference Books				
1.	Israelson, "Irrigation principles and practices", John Wiley & sons, New York, 2002.			
2.	Modi, P.N., "Irrigation and water resources and water power engineering", Standard Book House, New Delhi,2002.			
3.	Suresh, R., "Land and water management principles", Standard Publishers & Distributors,New Delhi,2008			

Course Code

Course Title

T P J C

22AGPI	E26	IRRIGATION WATER QUALITY AND WASTE	3	0 0	0	3					
		WATER MANAGEMENT		-	-						
Pre-requ	uisite		version		V.	1.0					
Course C	Course Objectives:										
1. To	o know	the basics concepts of irrigation water quality									
2. To impart knowledge on water quality for irrigation purposes, besides relevant											
environmental problems and recycle and reuse concepts.											
3. To	3. To understand the importance of water quality for irrigation and major uses of water and										
the	e role e	environmental issues									
Course C	Jutcom	AQ.									
		ne. Ants will be able to describe the parameters of water qu	ality								
2 Th	ne studi	ents will be able to describe the concepts of water quali-	tv for	irrigati	ion						
3. Th	ne stud	ents will be able to describe the water pollution and qua	litv co	nside	ratior	າຣ					
4. Th	ne stud	ents will be able to describe the recycling and reuse of v	vater								
5. Th	ne stud	ents will be able to describe the management of water of	juality	,							
			#								
Unit-1		WATER QUALITY		9 h	ours	5					
 Data co Software 	ollection packag	n platforms – Field kits – Water quality data storage, an jes	alysis	and i	nfere	nce –					
Unit-2		IRRIGATION WATER QUALITY		9 h	ours	;					
Water qua	ality for for poo	irrigation – Salinity and permeability problem – Root zo r quality water – Saline water irrigation – Future strateg	one sa ies	alinity	– Irri	gation					
Unit-3		WATER POLLUTION		9 h	ours	;					
Sources a	and Typ	pes of pollution – Organic and inorganic pollutants - BOI	D – D	O rela	tions	hips –					
impacts o	on wate	r resources - NPS pollution and its control - Eutrophi	catior	n cont	rol -	Water					
treatment	techno	ologies - Constructed wetland.									
Unit-4		RECYCLING AND REUSE OF WATER		9 h	ours	i					
Multiple u	uses of	water - Reuse of water in agriculture - Low cost w	vaste	water	trea	Itment					
technolog	jies - Eo	conomic and social dimensions - Packaged treatment ur	its – I	Rever	se os	mosis					
and desalination in water reclamation											
Unit-5		WAIER QUALIIT MANAGEMENI		9 n	ours	j					

Principles of water quality – Water quality classification – Water quality standards - Water quality indices – TMDL Concepts – Water quality models

Total Lecture hours: 45 hours

Text Book(s)

- 1. George Tchobanoglous, Franklin Louis Burton, Metcalf & Eddy, H. David Stense, "Waste water Engineering: Treatment and Reuse", McGraw-Hill, 2002
- 2. Vladimir Novonty, "Water Quality: Diffuse pollution and watershed Management", 2nd edition, John Wiley & Sons, 2003

Reference Books

gineering",
USA, 1985
oundwater
ſ

Course Code	Course Code Course Title L T P J						
22AGPE27	CLIMATE CHANGE AND ADAPTATION	3 0 0			0	3	
Pro-requisite		Sy	lab	ous	v	10	
		ve	rsi	on	v	. 1.0	
Course Object	ves:						
1. To know	the basics, importance of global warming						
2. To know	the concept of mitigation measures against global warr	ning					
3. To learn	about the global warming and climate change						
Course Outcor	ne:						
1. Demons	trate an understanding of how the threats and opportunit	es of	pr	edict	ed c	limate	
changes	will influence specific sectors at global and regional sca	le					
Identify t	he relationship between atmosphere and its component	S					
3. Analyze	the impacts of climate change on environment parameter	ərs					
4. Evaluate	the scientific insights underlying the assessment repo	rts of	th	e IP	CC,	with a	
focus on	impacts, adaptation and mitigation						
5. Critically	evaluate the relative opportunities and needs for miti	gatic	n a	and	adap	otation	
(includin	g vulnerability assessments) in a variety of sectoral con-	texts					
Unit-1	Unit-1 EARTHS CLIMATE SYSTEM 9 hours						
Role of ozone	Role of ozone in environment ozone layer ozone depleting gases Green House Effect,						
Radiative effects of Greenhouses Gases Hydrological Cycle Green House Gases and Global							
Warming Carbo	n Cycle						
Unit-2	ATMOSPHERE AND ITS COMPONENTS			9 h	ours	5	

Importance of Atmosphere - Physical Chemical Characteristics of Atmosphere - Vertical structure of the atmosphere- Composition of the atmosphere Atmospheric stability-Temperature profile of the atmosphere - Lapse rates - Temperature inversion - effects of inversion on pollution dispersion.

Unit-3	
--------	--

IMPACTS OF CLIMATE CHANGE

9 hours

Causes of Climate change : Change of Temperature in the environment Melting of ice Polesea level rise-Impacts of Climate Change on various sectors Agriculture, Forestry and Ecosystem Water Resources Human Health Industry, Settlement and Society Methods and Scenarios Projected Impacts for Different Regions Uncertainties in the Projected Impacts of Climate Change Risk of Irreversible Changes.

9 hours

Climate change and Carbon credits - CDM - Initiatives in India-Kyoto Protocol Intergovernmental Panel on Climate change - Climate Sensitivity and Feedbacks - The Montreal Protocol - UNFCCCIPCC - Evidences of Changes in Climate and Environment - on a Global Scale and in India.

Unit-5	CLIMATE CHANGE AND MITIGATION MEASURES	9 hours

Clean Development Mechanism -Carbon Trading -examples of future Clean Technology -Biodiesel - Natural Compost - Eco-Friendly Plastic - Alternate Energy -Hydrogen - Bio-fuels -Solar Energy - Wind - Hydroelectric Power -Mitigation Efforts in India and Adaptation funding Key Mitigation Technologies and Practices-Energy Supply - Transport - Buildings- Industry-Agriculture - Forestry - Carbon sequestration- Carbon capture and storage (CCS) - Municipal solid Waste (MSW) & Bio waste, Biomedical, Industrial waste International and Regional cooperation.

Total Lecture hours: 45 hours

Text E	3ook(s)			
1.	Sangam Shrestha, Mukand S. Babel and Vishnu Prasad Pandey, 2014, Climate Change and Water Resources, CRC Press an imprint of the Taylor & Francis Group			
2.	Intergovernmental Panel on Climate Change: https://www.ipcc.ch/			
Reference Books				
1.	Adaptation and mitigation of climate Scientific Technical Analysis, Cambridge University Press, Cambridge, 2006			
2.	Atmospheric Science, J.M. Wallace and P.V. Hobbs, Elsevier / Academic Press 2006			
3.	Jan C. van Dam, Impacts of Climate Change and Climate Variability on Hydrological Regimes?, Cambridge University Press, 2003			

Course Co	de Course Title	L T P J				
22AGPE2	8 MANAGEMENT OF CANAL IRRIGATION SYSTEM	EM 3 0 0 0				3
Pre-requisite					v	. 1.0
Course Ob	ectives:					
• To e	nable the students to acquire knowledge on irrigation syster	n an	d it	s alię	gnm	ent.
 To ir 	npart knowledge on canal command area and irrigation tern	ninol	ogy	-		
• Toe	nrich and familiarize the students in design of various water	cont	rol	stru	cture	es.
Course Out	come:					
1. Appl	y the knowledge on canal classification and its alignment.					
2. Dete	rmine duty, delta, base period relationships and canal capa	city.				
3. Desi	gn channels using Kennedy's theory and Lacey's regime the	eory.				
4. Diffe	rentiate between lined and unlined channels.					
5. Expl	ain different irrigation structures.					
Unit-1 C	anal classification and its alignment.			9 h	our	6
purpose, dia performance	scharge and alignment; canal alignment: general conside e indicators for canal irrigation system evaluation.	ratic	ns	for	alig	nment;
Ectimation	ater requirements and canal capacity	otor	nin			
capacity; waaffecting du	ater duty and delta, relationship between duty, base per y and method of improving duty.	od a	and	de	ta, f	actors
Unit-3 T	neories and equations on design of channels			9 h	our	5
Silt theory: regime theo	Kennedy's theory, design of channels by Kennedy's theory and basic regime equations.	ory a	and	Lac	ey's	
llnit_4	aintenance of lined and unlined irrigation canals			~ 1		
	generation of the second se			9 n	our	6
Maintenanc (canal runni canal lining characterist	e of unlined irrigation canals, measurement of discharge in cang schedule) and planning of warabandhi irrigation system: advantages and disadvantages, types of canal lining cs for the suitability of lining materials; design of lined canal	anals n, ne and s	s, rc ece de	9 n ster ssity sira	ours of ble	3

Water control and diversion structures, Functions of distributary head and cross regulators; canal falls, their necessity and factors affecting canal fall; sources of surplus water in canals and types of canal escapes; requirements of a good canal outlet and types of outlet

	Total Lecture hours:	45 hours
Text I	Book(s)	
1.	Irrigation, Water Power and Water Resources Engineering. Arora, K.R. 2 Publishers Distributors, Delhi	001. Standard
2.	Irrigation Engineering and Hydraulic Structures. Garg, S.K. 2014. Khan New Delhi.	nna Publishers
Refer	ence Books	
1.	Irrigation Engineering and Hydraulic structures. Sahasrabudhe, S.R. 20 & Sons Reprint 2015.	11. SK Kataria
2.	Irrigation Theory and Practice by A M Michael, Second Edition, Vikas Pu Pvt Ltd., New Delhi.	Iblishing house

Course Code	Course Title	L	Т	Ρ	J	С
22AGP29	LAND AND WATER MANAGEMENT APPLICATIONS USING GOOGLE EARTH ENGINE	3	0	0	0	З
Pre-requisite		Sy ve	llab rsio	ous on	V	. 1.0

Course Objectives:

- To equip the students with the knowledge on techniques of Google earth engine applications in land and water resources management.
- To enable the students to use surface water mapping and image processing for Water detection.
- To enable the students with the knowledge on flood and drought mapping.

Course Outcome:

- 1. Explain Google earth engine fundamentals.
- 2. Apply surface water mapping techniques for water detection.
- 3. Demonstrate precipitation time series analysis for regions and over long periods of time.
- 4. Classify land cover using land cover mapping and calculating area.
- 5. Apply remote sensing techniques and implement solutions to water resource management workflows in Earth Engine.

Unit-1	Google Earth Engine Fundamentals:	9 hours
Introduct	ion to the Google Earth Engine platform, Raster and vector data types,	Fundamentals
of JavaS	cript programming, Working with Image and Feature Collections,	Calculation of

vegetative and water Indices such as NDVI and NDWI etc., Exporting Raster and Vector Data.

Unit-2 Surface Water Mapping:

9 hours

Introduction to Water Detection Techniques: Simple Thresholding, Unsupervised Clustering. Introduction to the Global Surface Water (GSW) dataset, Extracting Seasonal and Permanent Waterbodies, Image Processing (Morphological Operations), Image Masking, Raster to Vector Conversion.

Introduction to Gridded Precipitation and Climate Datasets, Map/Reduce P Concepts, Calculating Total Rainfall in a Region, Creating Time-series Chart a Time-series of Rainfall in a Region, Calculating Long-Term Month Rainfall.Trend analysis. Unit-4 Land Use Land Cover Mapping: Introduction to Unsupervised Classification using Machine Learning algorithm								
Unit-4 Land Use Land Cover Mapping: Introduction to Unsupervised Classification using Machine Learning algorithm	Introduction to Gridded Precipitation and Climate Datasets, Map/Reduce Programming Concepts, Calculating Total Rainfall in a Region, Creating Time-series Charts, Exporting a Time-series of Rainfall in a Region, Calculating Long-Term Monthly Average Rainfall.Trend analysis.							
Introduction to Unsupervised Classification using Machine Learning algorithm	9 hours							
Introduction to Unsupervised Classification using Machine Learning algorithms for Land cover, types of classifiers, Accuracy Assessment, Change detection of LULC, training, testing and validation.								

Unit-5	Flood Mapping and Drought Mapping:
--------	------------------------------------

9 hours

Introduction to Radar Remote Sensing, Scattering of Microwaves, Fundamentals of Synthetic Aperture Radar (SAR), Basics of Image formation and visualizing SAR Imagery, Change Detection Methods for Detecting Floods. Introduction to Drought Mapping and Monitoring, Assessment of Long-Term MODIS NDVI Time-Series.

Total Lecture hours:45 hours

Text E	Book(s)
1	Gandhi, Ujaval, 2021. Google Earth Engine for Water Resources Management Course.
1.	Spatial Thoughts.
C	Remote Sensing in Hydrology and Water Management. G.A. Shultz and E.T. Engman.
۷.	Springer, New York, 2000.
Refer	ence Books
1	O. Mutanga and L. Kumar, "Google Earth Engine applications," Remote Sens., vol. 11,
1.	no. 5, pp. 11–14, 2019.
	N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R.Moore, "Google
2.	earth engine: Planetary-scale geospatial analysis foreveryone," Remote Sens. Environ.,
	vol. 202, pp. 18–27, Dec. 2017.

Course Coue	Course Title	L	Т	Ρ	J	С
22AGPE30	WATER HARVESTING AND SOIL CONSERVATION STRUCTURES	3	0 0 0 3		3	
Pre-requisite		Syllabus version v. 1				. 1.0
Course Object	tives:					
 To ena 	ble the students to design and execute the structures for wa	ater	ha	arve	sting	
 To imp 	art the knowledge on cost estimation of various soil and wat	ter c	on	ser	atio	n farm
structu	es.					
To ena	ble the students to design and execute the structures for co	ontro	olli	ng s	oil e	rosion
and wa	ter erosion in watershed.					
Course Outco	me:					
1. Recom	mend the short term and long term runoff harvesting at a	appr	ор	riate	e pla	ces in
waters	1ed.					
2. Design	the functions of acil creation control structures					
3. Explain	the functions of soil erosion control structures.	dva	ric		oorm	onont
4. Apply t	ne concept hydraulic jump, runon measuring structures and	u va		Jus j	Jem	lanent
5 Estima	in the load analysis on various components of soil conservations	atio	n e	truct	hiroc	
J. LStilla		alioi	13	uuu	uiea	.
Unit-1 Wat	er harvesting			9 h	ours	5
Unit-1 Wat	er harvesting ortance and uses. Water harvesting techniques – classificati	tion	ba	9 h sed	ours on s	ource,
Unit-1 Wat Principles, imp storage and	er harvesting ortance and uses. Water harvesting techniques – classificati use. Runoff harvesting – short-term and long-term tecl	tion chnic	ba que	9 h sed es.	ours on s Shor	s ource, t-term
Unit-1 Wat Principles, imp storage and harvesting tec	er harvesting ortance and uses. Water harvesting techniques – classificati use. Runoff harvesting – short-term and long-term tech nniques - contour bunds, semicircular hoop, trapezoidal bu	tion hnio	ba que s,	9 h sed es. grac	ours on s Shor led t	s ource, t-term ounds,
Unit-1WatPrinciples, impstorageandharvestingtecrockcatchmer	er harvesting ortance and uses. Water harvesting techniques – classificati use. Runoff harvesting – short-term and long-term tech nniques - contour bunds, semicircular hoop, trapezoidal bu t and ground catchment. Long term harvesting techniques-	tion chnic und - pu	ba que s, rpc	9 h sed es. grac ose a	ours on s Shor led b and c	ource, t-term ounds, design
Unit-1WatPrinciples, impstorageandharvestingtecrockcatchmencriteria	er harvesting ortance and uses. Water harvesting techniques – classification use. Runoff harvesting – short-term and long-term techniques - contour bunds, semicircular hoop, trapezoidal but t and ground catchment. Long term harvesting techniques-	tion chnic und - pu	ba que s, rpc	9 h sed es. grac ose a	ours on s Shor led k and c	ource, t-term ounds, design
Unit-1 Wat Principles, imp storage and harvesting tec rock catchmer criteria	er harvesting ortance and uses. Water harvesting techniques – classificati use. Runoff harvesting – short-term and long-term tech nniques - contour bunds, semicircular hoop, trapezoidal bu t and ground catchment. Long term harvesting techniques-	tion chnic und - pu	ba que s, rpc	9 h sed es. grac ose a	ours on s Shor led k and c	ource, rt-term ounds, design
Unit-1WatPrinciples, impstorageandharvestingtecrockcatchmercriteriaUnit-2Stru	er harvesting ortance and uses. Water harvesting techniques – classificationse. Runoff harvesting – short-term and long-term techniques - contour bunds, semicircular hoop, trapezoidal but t and ground catchment. Long term harvesting techniques- ctures	tion chnic und - pu	ba que s, f rpc	9 h sed es. grac ose a 9 h	ours on s Shor led k and c ours	s ource, rt-term ounds, design
Unit-1WatPrinciples, impstorageandharvestingtecrockcatchmercriteriaUnit-2Farmponds	er harvesting ortance and uses. Water harvesting techniques – classification use. Runoff harvesting – short-term and long-term techniques - contour bunds, semicircular hoop, trapezoidal but t and ground catchment. Long term harvesting techniques- ctures dug-out and embankment reservoir types, tanks and substitution	tion chnic und - pu	ba que s, rpc	9 h sed es. grac ose a 9 h e dy	ours on s Shor led t and c ours kes.	s ource, rt-term bunds, design s Farm
Unit-1WatPrinciples, impstorageandharvestingtecrockcatchmercriteriaUnit-2StruFarmpondcompo	er harvesting ortance and uses. Water harvesting techniques – classifications use. Runoff harvesting – short-term and long-term techniques - contour bunds, semicircular hoop, trapezoidal but t and ground catchment. Long term harvesting techniques- ctures dug-out and embankment reservoir types, tanks and substances nents, site selection, design criteria, capacity, embankment	tion chnic und - pu surf ent,	ba que s, rpc ace m	9 h sed es. grac ose a 9 h e dy	ours on s Shor led k and c ours kes. anica	s ource, rt-term bunds, design s Farm al and
Unit-1WatPrinciples, impstorage andharvesting tecrock catchmercriteriaUnit-2StruFarm ponds -pond - comportemergency sp	er harvesting ortance and uses. Water harvesting techniques – classification use. Runoff harvesting – short-term and long-term techniques - contour bunds, semicircular hoop, trapezoidal but t and ground catchment. Long term harvesting techniques- ctures dug-out and embankment reservoir types, tanks and substances nents, site selection, design criteria, capacity, embankment illways, cost estimation and construction. Percolation po	tion chnic und - pu surf ent, ond	ba que s, rpc acc m -	9 h sed es. grac ose a 9 h e dy ech site	ours on s Shor led k and c ours kes. anica sele	s ource, rt-term bunds, design s Farm al and ection,
Unit-1WatPrinciples, impstorage andharvesting tecrock catchmercriteriaUnit-2StruFarm ponds -pond - compoemergency spdesign and co	er harvesting ortance and uses. Water harvesting techniques – classifications. Use. Runoff harvesting – short-term and long-term techniques - contour bunds, semicircular hoop, trapezoidal but t and ground catchment. Long term harvesting techniques- ctures dug-out and embankment reservoir types, tanks and substants, site selection, design criteria, capacity, embankment illways, cost estimation and construction. Percolation potents.	tion chnid und - pu surf ent,	ba que s, rpc acc m -	9 h sed es. grac ose a 9 h e dy ech site	ours on s Shor led b and c ours kes. anica sele	s ource, rt-term bunds, design s Farm al and ection,
Unit-1WatPrinciples, impstorage andharvesting tecrock catchmercriteriaUnit-2StruFarm ponds -pond - comportemergency spdesign and co	er harvesting ortance and uses. Water harvesting techniques – classifications. Use. Runoff harvesting – short-term and long-term techniques - contour bunds, semicircular hoop, trapezoidal but t and ground catchment. Long term harvesting techniques- ctures dug-out and embankment reservoir types, tanks and substanents, site selection, design criteria, capacity, embankment illways, cost estimation and construction. Percolation ponstruction details. Design considerations of nala bunds.	tion chnic und - pu surf ent, ond	ba que s, rpc aco m -	9 h sed grac ose a 9 h e dy echa site	ours on s Shor led k and c ours kes. anica sele	s ource, rt-term ounds, design s Farm al and ection,
Unit-1WatPrinciples, impstorage andharvesting tecrock catchmercriteriaUnit-2StruFarm ponds -pond - comportemergency spdesign and coUnit-3Soil	erosion control structures	tion chnic und - pu surf ent, ond	ba que s, rpc acc m -	9 h sed es. grac ose a 9 h e dy ech site 9 h	ours on s Shor led b and c ours kes. anica sele ours	s ource, rt-term bunds, design s Farm al and ection,
Unit-1WatPrinciples, impstorage andharvesting tecrock catchmercriteriaUnit-2StruFarm ponds -pond - compoemergency spdesign and coUnit-3SoilIntroduction, co	er harvesting ortance and uses. Water harvesting techniques – classification use. Runoff harvesting – short-term and long-term techniques - contour bunds, semicircular hoop, trapezoidal but t and ground catchment. Long term harvesting techniques- ctures dug-out and embankment reservoir types, tanks and substanents, site selection, design criteria, capacity, embankment illways, cost estimation and construction. Percolation potents instruction details. Design considerations of nala bunds. erosion control structures lassification and functional requirements. Design of Gabi	tion chnid und - pul surf ent, ond	ba que s, rpc aco m -	9 h sed grac ose a 9 h e dy ech site 9 h	ours on s Shor led k and c ours kes. anica sele ours	s ource, rt-term bunds, design s Farm al and ection,
Unit-1WatPrinciples, impstorage andharvesting tecrock catchmercriteriaUnit-2StruFarm ponds -pond - compoemergency spdesign and coUnit-3SoilIntroduction, coPermanent str	er harvesting ortance and uses. Water harvesting techniques – classification use. Runoff harvesting – short-term and long-term techniques - contour bunds, semicircular hoop, trapezoidal but t and ground catchment. Long term harvesting techniques- ctures dug-out and embankment reservoir types, tanks and substant nents, site selection, design criteria, capacity, embankment illways, cost estimation and construction. Percolation potential output details. Design considerations of nala bunds. erosion control structures lassification and functional requirements. Design of Gabi uctures for soil conservation and gully control – check dam	tion chnic und - pul surf ent, ond	ba que s, rpc aco m -	9 h sed grac ose a 9 h e dy ech site 9 h	ours on s Shor led b and c ours kes. anica sele ours ures. hute	s ource, t-term bunds, design Farm al and ection,
Unit-1WatPrinciples, impstorage andharvesting tecrock catchmercriteriaUnit-2StruFarm ponds -pond - compoemergency spdesign and coUnit-3SoilIntroduction, coPermanent strand drop inletbudgela sign budgela sign	er harvesting ortance and uses. Water harvesting techniques – classification use. Runoff harvesting – short-term and long-term techniques - contour bunds, semicircular hoop, trapezoidal but t and ground catchment. Long term harvesting techniques- ctures dug-out and embankment reservoir types, tanks and substanents, site selection, design criteria, capacity, embankment illways, cost estimation and construction. Percolation potents instruction details. Design considerations of nala bunds. erosion control structures lassification and functional requirements. Design of Gabi uctures for soil conservation and gully control – check dam spillways - design requirements, planning for design, design	tion chnid und - pul surf ent, ond ion ns, c n pr	ba que s, rpc acc m - str dro roc	9 h sed grac ose a 9 h e dy ech site 9 h guctu	ours Shor led k and c ours kes. anica sele ours ures. hute res -	s ource, rt-term bunds, design s Farm al and ection,
Unit-1WatPrinciples, impstorage andharvesting tecrock catchmercriteriaUnit-2StruFarm ponds -pond - compoemergency spdesign and coUnit-3SoilIntroduction, coPermanent strand drop inlethydrologic, hydr	er harvesting ortance and uses. Water harvesting techniques – classification use. Runoff harvesting – short-term and long-term techniques - contour bunds, semicircular hoop, trapezoidal but to and ground catchment. Long term harvesting techniques- ctures dug-out and embankment reservoir types, tanks and substanents, site selection, design criteria, capacity, embankment illways, cost estimation and construction. Percolation perstruction details. Design considerations of nala bunds. erosion control structures lassification and functional requirements. Design of Gabion control structures uctures for soil conservation and gully control – check dames spillways - design requirements, planning for design, design draulic and structural design and stability analysis.	tion chnic und - pur surf ent, ond	ba que s, rpc acc m -	9 h sed grac ose a 9 h e dy echa site 9 h	ours Shor led b and c ours kes. anica sele ours ures. hute res -	s ource, rt-term bunds, design s Farm al and ection,
Unit-1 Wat Principles, imp storage and harvesting tec rock catchmer criteria Unit-2 Stru Farm ponds - pond - composition design and co Unit-3 Soil Introduction, co Permanent strand drop inlet hydrologic, hydrologic	er harvesting ortance and uses. Water harvesting techniques – classification use. Runoff harvesting – short-term and long-term techniques - contour bunds, semicircular hoop, trapezoidal but t and ground catchment. Long term harvesting techniques- ctures dug-out and embankment reservoir types, tanks and subsements, site selection, design criteria, capacity, embankment illways, cost estimation and construction. Percolation points instruction details. Design considerations of nala bunds. erosion control structures lassification and functional requirements. Design of Gabi uctures for soil conservation and gully control – check dam spillways - design requirements, planning for design, design fraulic and structural design and stability analysis.	tion chnid und - pul surf ent, ond ion ns, o n pr	ba que s, rpc acc m - str dro	9 h sed grac ose a 9 h e dy ech site 9 h cuctu	ours Shor led b and c ours kes. anica sele ours nuce res -	s ource, rt-term bunds, design s Farm al and ection, s

Hydraulic jump and its application. Drop spillway - applicability, types - straight drop, box-type inlet spillways - description, functional use, advantages and disadvantages, straight apron and stilling basin outlet, structural components and functions.

Chute spillway - description, components, energy dissipaters, design criteria of Saint Antony Falls (SAF) stilling basin and its limitations. Drop inlet spillway - description, functional use and design criteria.

Unit-5 Safety measures

9 hours

Loads on head wall, variables affecting equivalent fluid pressure, triangular load diagram for various flow conditions, creep line theory, uplift pressure estimation, safety against sliding, overturning, crushing and tension.

	Total Lecture hours:	45 hours					
Text Book(s)							
1	Michael, A.M. and T.P. Ojha. 2003. Principles of Agricultural Engineering	. Volume II. 4th					
1.	Edition, Jain Brothers, New Delhi.						
2	Singh Gurmel, C. Venkataraman, G. Sastry and B.P. Joshi. 1996. Man	ual of Soil and					
۷.	Water Conservation Practices. Oxford and IBH Publishing Co. Pvt. Ltd.,	New Delhi.					
Refere	ence Books						
1.	Suresh, R. 2014. Soil and Water Conservation Engineering. Stand Distributors, New Delhi.	dard Publisher					
2	Murthy, V.V.N. 2002. Land and Water Management Engineering. 4th E	dition, Kalyani					
۷.	Publishers, New Delhi.						

VERTICAL 4- IT AND AGRICULTURAL BUSINESS MANAGEMENT INTEGRATED FARMING SYSTEM

Course Code	Course Title	L	Т	Ρ	J	С
22AGPE31	INTEGRATED FARMING SYSTEM	3	0	0	0	3
Pre-requisite		Sy ve	llab ersio	ous on	V	. 1.0

Course Objectives:

This course will improve the student skills in the area of farming system research and optimization methodology to design individual integrated farming system in scientific manner

Course Outcome:

- 1. Understand practical knowledge on specialized in different farming system.
- 2. Apply the farm wastes with recycle use of different IFS components.
- 3. Analysis of comparative benefits of the different IFS components
- 4. Design a farming system model for wetland, garden land and dry land
- 5. Evaluate the extent of wetland, garden land and dry land Integrated Farming System

Unit-1		INTRODUCTION OF FARMING SYSTEM	9 hours				
Farmir	ng system	- introduction - scope of farming system - importance - conce	ept – principles				
of farm	ing syste	n - Types of farming systems – Advantages and limitations - suit	tability – factors				
affectir	ng the farr	ning system					
Unit-2		INTEGRATED FARMING SYSTEM	9 hours				
Integra	ated farmi	ng system-historical background - objectives and characteristics	advantages of				
IFS – (Compone	nts of IFS - Integrated Farming System in Wetland – IFS in gard	den land –- IFS				
in dryla	and and fa	allow land					
Unit-3		LIVESTOCK PRODUCTION IN IFS	9 hours				
IFS W	ith Goats	and Sneep – housing and feeding management – deworming	- Young stock				
manag	jement - L	Jairy Farming in IFS - Fodder production in IFS - IFS with poultry	/ rearing - Duck				
farming	g – Rabbi	t farming – Piggery					
Linit 4		IES COMPONENTS	0 hours				
Unit-4		IF3 COMPONENTS	9 110015				
Agrofo	restry – o	definition - types of agroforestry system - benefits of agrofo	restry system-				
Aquac	ulture – F	ish cum agriculture and horticulture – Beekeeping – types and	cast of bees -				
care a	nd manag	ement in beekeeping – Sericulture - Mulberry cultivation – Silk	worm rearing –				
Organi	ic farming	 Azolla – Small scale nursery 					
Unit-5		RESOURCE RECYCLING IN IFS	9 hours				
Resou	rce recyc	ling in wetland IFS - Resource flow in crop + dairy + biog	as + spawn +				
silvicul	ture In IF	S - Biogas production through IFS – Resource recycling in cro	op + goat IFS -				
Uses	and feat	ures of biogas - Structure and function of Dheenabandhι	u Gas plant -				
Vermio	compost -	Preparation of vermicompost from farm residue - Mushroom pro	oduction in IFS.				
		Total Lecture hours:	45 hours				
Text B	ook(s)						
	Nanda, S	ankarsana. Integrated farming system practices: challenges and	d opportunities.				
1.	New Indi	a Publishing Agency, 2016.					
	Ravikiran Vasant Mane. Integrated Farming System: A Strategy for Sustainable Farm						
2. Production & Livelihood Security, Scitus Academics, 2016							
Refere	ence Boo	ks					
4	Zaman,	Integrated Farming System and Agricultural, New India Publ	ishing Agency,				
1.	2019	- · · · · · · · · · · · · · · · · · · ·	•				
2.	Nanwal F	R. K. Farming System and Sustainable Agriculture, Kalyani Pub	lishers, 2017				
Cours	se Code	Course Title	P J C				

Course TitleLIPJC22AGPE32AGRICULTURAL BUSINESS MANAGEMENT30003Curriculum and Syllabus | B.Tech - Agricultural Engineering | R2022 | Page | 154

Pre-req	uisite		Syllabus version	v. 1.0				
Course (Objecti	ves:						
1. To introduce the importance of Agri-business management, its characteristics and								
р	rinciples	· · · · ·						
2. T	2. To impart knowledge on the functional areas of Agri-business like Marketing							
m	nanager	nent, Product pricing methods and Market potential ass	essment.					
Course	Outcom	le:						
1. Un agi	nderstan ribusine	d the concepts and fundamentals of managements.	nt with ref	erence to				
2. Ga	ain knov	vledge about organization and functioning of different	institutions i	nvolved in				
ayı 3 Un	Ilculuie	d the different concents of inventory management of ac	uricultural inr	Nute				
2 5. 01	nose st	idents to various concepts of financing Agri Business		Juio				
5. Ha	ve the k	mowledge of marketing agricultural products and the te	chniques inv	volved				
0				01104				
Unit-1		CONCEPTS OF AGRICULTURAL BUSINESS	9 h	ours				
Agri-busi	iness -	scope, characteristics, types. Management - ir	nportance,	definition,				
manager	ment an	d administration, management thoughts, Small busines	s - characte	ristics and				
stages of	f growth	- Management functions - planning, organizing, leading	9					
			-					
Unit-2		AGRI – BUSINESS ORGANIZATION	9 h	ours				
Principle	s, forms	of agri-business organizations, staffing, directing, supe	rvision and i	motivation.				
Controllir	ng - type	es, performance evaluation and control techniques. Mai	nagement a	pproaches				
- Profit	Centere	ed Approach, Management by objectives and Qua	lity Circles.	Strength,				
Weaknes	ss, Opp	ortunities and Threat (SWOT) Analysis.						
	1		0.6					
Unit-3		AGRICULTURAL MARKETING	9 ח	ours				
Function	al area	s of Agri-business - Production and Operations mar	nagement -	functions,				
planning	physic	al facilities and managing quality. Agro-inputs an	d products	inventory				
manager	ment - ra	aw material procurement, inventory types, and costs. Ma	arketing ma	nagement-				
Marketing	g envirc	nment, marketing mix - Agricultural input marketing firm	าร					
	1							
Unit-4		AGRICULTURAL BUSINESS FINANCE	9 h	ours				
Forms of	f agri-bu	isiness organizations - Role of lead bank in agribusine	ess finance	- Financial				
manager	ment. Ad	equiring capital-Budget analysis. Concepts and determin	ants-Busin	ess project				
schedulir	ng of ra	aw material procurement - production management	- launching	products				
(branding	g, place	ment) - Input marketing promotion activities.						
(branding, placement) input marteting premeter activities.								
	T							

Agricultural products - marketing promotion activities - product pricing methods. District Industries Centre - Consumer survey - Agricultural inputs retailing - Market potential assessment - types of distribution channels - Return on Investment - Personnel management. Recruitment, selection and training - Technology in Agri Business

Total Lecture hours: 45 hours

Text Book(s)

- 1.
 Himanshu, "Agri Business Management Problems and prospects", Ritu Publications, Jaipur, 2005.

 2.
 Smita Diwase, "Indian Agriculture and Agribusiness Management", Krishi resource Management Network, Pune 2004.

 Reference Books

 1.
 Chandra Prasanna, "Projects: Preparation, Appraisal, Budgeting and Implementation", Tata McGraw Hill Publications, New Delhi, 2001.

 2.
 Kotler, P., "Marketing Management. Analysis, Planning and Control", Prentice Hall Inc., New York, 2001.

 2.
 Reserverse and Narayana, P.S., "Principles and Practices of Management", Konark
- Rao, V.S.P., and Narayana, P.S., "Principles and Practices of Management", Konark
 Publishing Private Limited, New Delhi, 2001.

Course Code	Course Title	L	Т	Ρ	J	С
22AGPE33	SUSTAINABLE AGRICULTURE AND FOOD SECURITY	3	0	0	0	3
Pre-requisite		Sy ve	llab rsio	ous on	V	. 1.0

Course Objectives:

- 1. To study the importance of sustainable agriculture for the growing population, various resources required and their sustainability.
- 2. Importance of science, food security and ecological balance.

Course Outcome:

- 1. Understand methods to sustain land resources.
- 2. Cognize approaches to sustain water resources and its utilization for agriculture and allied activities.
- 3. Design and develop new, improved and sustainable systems of agriculture and allied activities.
- 4. Understand new technologies for improving food security.
- 5. Comprehend policies to achieve sustainable farming and food security.

Unit-1SUSTAINABILITY OF NATURAL RESOURCES9 hoursLand Resources of India, Population and land, Land utilization, Net Area Sown, changes in
cropping pattern, land degradation. Rainfall forecasting - Adequacy of Rainfall for crop growth

 Rainfall, Drought and production instability – Irrigation potential – Available, created and utilized – River basins; Watersheds and Utilizable surface water – Utilizable water in future (Ground water & Surface water)

Unit-2

SUSTAINABLE AGRICULTURE

9 hours

Sustainable agriculture-definition. Agro-ecosystems - Impact of climate change on Agriculture, Effect on crop yield, effect on Soil fertility – Food grain production at State Level – Indicators of Sustainable food availability – Indicators of food production sustenance.

Unit-3

ORGANIC FARMING

9 hours

Natural farming principles – Sustainability in rain fed farming – organic farming – principles and practices. Organic farming-regulation and sustainability – The scale and productivity of organic sustainable systems.

Unit-4 SUSTAINABLE FOOD PRODUCTION FOR FOOD SECURITY 9 hours

Performance of Major Food Crops over the past decades – trends in food production – Decline in total factor productivity growth – Demand and supply projections – Impact of market force – Vertical farming – Controlled Environment Agriculture – Genetics diversity – GMO's. Sustainable food security indicators and index – Indicator of sustainability of food Security

Unit-5	POLICES AND PROGRAMMES FOR SUSTAINABLE	9 hours
	AGRICULTURE AND FOOD SECURITY	

Food and Crop Production polices – Agricultural credit Policy – Crop insurance –Policies of Natural Resources Use – Policies for sustainable Livelihoods – Virtual water and trade - Sustainable food Security Action Plan.

Total Lecture hours:45 hours

Text Book(s)

- 1.M.S.Swaminathan, Science and sustainable food security, World Scientific Publishing
Co., Singapore, 2010.
- 2. B.K.Desai and Pujari, B.T. Sustainable Agriculture: A vision for future, New India Publishing Agency, New Delhi, 2007

Reference Books

1.	Swarna S. Vepa et al., Atlas of the sustainability of food security. MSSRF, Chennai, 2004.
2.	Sithamparanathan, J., Rengasamy, A., Arunachalam, N. Ecosystem principles and sustainable agriculture, Scitech Publications, Chennai, 1999
3.	Tanji, K. K., and Yaron, B. Management of water use in agriculture, Springer Verlag,

Berlin, Germany, 1994.

Course Code	Course Title	L	Т	Ρ	J	С
Curriculum and Syllabus B.Tech - Agricultural Engineering R2022 Page 157						

22AGP	PE34	SYSTEMS ANALYSIS IN AGRICULTURAL ENGINEERING	3	0	0	0	3
Pre-req	uisite		Syl ve	Syllabus version v. 1.0			1.0
Course	Course Objectives:						
1	. To in	roduce the students to the application of systems conce	ot to	irriga	atio	n pla	Inning
	and r	nanagement.					
2	. Optin	nization technique for modeling water resources	Sy or th	sten	ns, oci	Irri too	gation
	aspe	cts will be taught.	eru			J-lec	millai
	0.010						
Course	Outcom	ne:					
1	. Unde	rstand practical knowledge on specialized in different	wat	er re	eso	urce	s and
	irriga	tion system.					
2	. Apply	the Linear programming for crop planning and schedul	ing.			aom	ont
	. Appiy Desid	in a reservoir irrigation system simulation mode	Jalio I for	r ma	fici	ent	water
	mana	agement	1 101	01		on	water
5	. To ev	valuate the application of optimization techniques used	to a	ddre	ess	the	socio-
	techr	ical aspects irrigation water management.					
	1						
Unit-1		SISTEM CONCEPTS	nd c	top	9 n	ours	otomo
engineer	ing – N	end for systems approach to water resources and irrigat	na s ion	step	5 11	i Sy	stems
crigineer			1011.				
Unit-2		LINEAR PROGRAMMING		1	9 h	ours	;
Introduct	ion to o	operations research - Linear programming, problem	form	ulati	ion,	gra	phical
solution,	solutior	n by simplex method – Sensitivity analysis, application to	o des	ign	anc	l ope	ration
of reserv	oir, sing	le and multipurpose development plans – Irrigation wate	er alle	ocat	ion	- Cro	pping
pattern o	ptimiza	lion.					
Unit-3		SIMULATION		1	9 h	ours	;
Basic pri	nciples	and concepts – Random variate and random process – M	lonte	Ca	rlot	echr	niques
– Model	develo	oment – Inputs and outputs – Single and multipurpos	e res	serv	oir	simu	lation
models -	models – Deterministic and stochastic simulation – Irrigation Scheduling.						
Unit-4		DYNAMIC PROGRAMMING			9 h	ours	;
Bellman'	s optim	ality criteria, problem formulation and solutions – App	licati	on t	0 0	lesig	n and
operatior	operation of reservoirs, Single and multipurpose reservoir development plans – Applications in						
Irrigation	manad	Irrigation management.					

Unit-5	OPTIMIZATION TECHNIQUES	9 hours				
Intege	Integer and parametric linear programming – Applications to Irrigation water management-					
Goal p	Goal programming models with applications.					
	Total Lecture hours:	45 hours				
Text E	Book(s)					
1	Vedula, S., and Majumdar, P.P. Water Resources Systems – Modeling T	echniques and				
1.	Analysis Tata McGraw Hill, New Delhi, Fifth reprint, 2010.					
2	Gupta, P.K., and Man Mohan, "Problems in Operations Research",	(Methods and				
۷.	Solutions), Sultan Chand and Sons, New Delhi, 1995.					
Refer	Reference Books					
1	Chaturvedi, M.C., "Water Resources Systems Planning and Managed	gement", Tata				
1.	McGraw Hill, New Delhi, 1997.					
2.	Taha, H.A., "Operations Research", McMillan Publication Co., New York	., 1995.				
3	Hiller, F.S., and Liebermann, G.J., "Operations Research", CBS Pu	Iblications and				
5.	Distributions, New Delhi, 1992.					

Course Code	Course Title	L	Т	Ρ	J	С
22AGPE35	IT IN AGRICULTURAL SYSTEM	3	0	0	0	3
Pre-requisite		Sy ve	llab rsio	ous on	V.	. 1.0

Course Objectives:

- 1. To introduce the students to areas of agricultural systems in which IT and computers play a major role.
- 2. To also expose the students to IT applications in precision farming, environmental control systems, agricultural systems management and weather prediction models.

Course Outcome:

- 1. The students shall be able to understand the applications of IT in remote sensing applications such as Drones etc.
- 2. The students will be able to get a clear understanding of how a greenhouse can be automated and its advantages.
- 3. The students will be able to apply IT principles and concepts for management of field operations.
- 4. The students will get an understanding about weather models, their inputs and applications.
- 5. The students will get an understanding of how IT can be used for e-governance in agriculture

Unit-1

PRECISION FARMING

9 hours

Precisi GPS, 0	Precision agriculture and agricultural management – Ground based sensors, Remote sensing, GPS, GIS and mapping software, Yield mapping systems, Crop production modeling.					
Unit-2	ENVIRONMENT CONTROL SYSTEMS	9 hours				
Artificial light systems, management of crop growth in greenhouses, simulation of CO2 consumption in greenhouses, on-line measurement of plant growth in the greenhouse, models of plant production and expert systems in horticulture.						
Unit-3	AGRICULTURAL SYSTEMS MANAGEMENT	9 hours				
Agricu	tural systems - managerial overview, Reliability of agricultural systems	, Simulation of				
crop gi	owth and field operations, Optimizing the use of resources, Linear progra	mming, Project				
schedu	uling, Artificial intelligence and decision support systems					
Unit-4	WEATHER PREDICTION MODELS	9 hours				
Importance of climate variability and seasonal forecasting, Understanding and predicting world's climate system, Global climatic models and their potential for seasonal climate forecasting, General systems approach to applying seasonal climate forecasts.						
Unit-5	E-GOVERNANCE IN AGRICULTURAL SYSTEMS	9 hours				
Unit-5 Expert e-busir learnin	E-GOVERNANCE IN AGRICULTURAL SYSTEMS systems, decision support systems, Agricultural and biological databases ness systems & applications, Technology enhanced learning systems ar g, Rural development and information society.	9 hours s, e-commerce, nd solutions, e-				
Unit-5 Expert e-busir learnin	E-GOVERNANCE IN AGRICULTURAL SYSTEMS systems, decision support systems, Agricultural and biological databases ness systems & applications, Technology enhanced learning systems ar g, Rural development and information society. Total Lecture hours:	9 hours s, e-commerce, nd solutions, e- 45 hours				
Unit-5 Expert e-busir learnin Text B	E-GOVERNANCE IN AGRICULTURAL SYSTEMS systems, decision support systems, Agricultural and biological databases ness systems & applications, Technology enhanced learning systems ar g, Rural development and information society. Total Lecture hours: sook(s)	9 hours s, e-commerce, nd solutions, e- 45 hours				
Unit-5 Expert e-busir learnin Text B	E-GOVERNANCE IN AGRICULTURAL SYSTEMS systems, decision support systems, Agricultural and biological databases ness systems & applications, Technology enhanced learning systems ar g, Rural development and information society. Total Lecture hours: Took(s) National Research Council, "Precision Agriculture in the 21st Cen Academies Press, Canada, 1997.	9 hours s, e-commerce, nd solutions, e- 45 hours tury", National				
Unit-5 Expert e-busir learnin Text B 1. 2.	E-GOVERNANCE IN AGRICULTURAL SYSTEMS systems, decision support systems, Agricultural and biological databases ness systems & applications, Technology enhanced learning systems ar g, Rural development and information society. Total Lecture hours: Total Lecture hours: Took(s) National Research Council, "Precision Agriculture in the 21st Cen Academies Press, Canada, 1997. H. Krug, Liebig, H.P. "International Symposium on Models for Environmental Control and Farm Management in Protected Cultivation",	9 hours s, e-commerce, nd solutions, e- 45 hours tury", National Plant Growth, 1989.				
Unit-5 Expert e-busir learnin Text B 1. 2. Refere	E-GOVERNANCE IN AGRICULTURAL SYSTEMS systems, decision support systems, Agricultural and biological databases ness systems & applications, Technology enhanced learning systems ar g, Rural development and information society. Total Lecture hours: Total Lecture hours: Took(s) National Research Council, "Precision Agriculture in the 21st Cen Academies Press, Canada, 1997. H. Krug, Liebig, H.P. "International Symposium on Models for Environmental Control and Farm Management in Protected Cultivation", ence Books	9 hours s, e-commerce, nd solutions, e- 45 hours tury", National Plant Growth, 1989.				
Unit-5 Expert e-busir learnin Text B 1. 2. Refere	E-GOVERNANCE IN AGRICULTURAL SYSTEMS systems, decision support systems, Agricultural and biological databases ness systems & applications, Technology enhanced learning systems ar g, Rural development and information society. Total Lecture hours: fook(s) National Research Council, "Precision Agriculture in the 21st Cen Academies Press, Canada, 1997. H. Krug, Liebig, H.P. "International Symposium on Models for Environmental Control and Farm Management in Protected Cultivation", ence Books Peart, R.M., and Shoup, W. D., "Agricultural Systems Management", I New York, 2004	9 hours s, e-commerce, nd solutions, e- 45 hours tury", National Plant Growth, 1989. Marcel Dekker,				
Unit-5 Expert e-busir learnin Text B 1. 2. Refere 1. 2.	E-GOVERNANCE IN AGRICULTURAL SYSTEMS systems, decision support systems, Agricultural and biological databases ness systems & applications, Technology enhanced learning systems ar g, Rural development and information society. Total Lecture hours: Total Lecture hours: Total Lecture hours: National Research Council, "Precision Agriculture in the 21st Cen Academies Press, Canada, 1997. H. Krug, Liebig, H.P. "International Symposium on Models for Environmental Control and Farm Management in Protected Cultivation", Ence Books Peart, R.M., and Shoup, W. D., "Agricultural Systems Management", I New York, 2004 Hammer, G.L., Nicholls, N., and Mitchell, C., "Applications of Seas Springer, Germany, 2000.	 9 hours s, e-commerce, and solutions, e- 45 hours 45 hours tury", National Plant Growth, 1989. Marcel Dekker, sonal Climate", sonal Climate", sonal Climate, sonal Clima				

Course Code	Course Title	L	Τ	Ρ	J	С	
22AGPE36	AUTOMATION IN AGRICULTURE	3	0	0	0	3	
Pro-requisite		Sy	llab	us	v	10	
		ve	rsio	on	v.	. 1.0	

Course Objectives:

- 1. To know the operation of various electronic circuits and its applications.
- 2. To get adequate knowledge about various sensors and robots used in agricultural processes
- 3. To learn automation techniques in agricultural system

Course Outcome:

- 1. Exemplify the working operations of electronic devices and processors
- 2. Interpret the necessity of sensor requirements for precision farming practices
- 3. Understand the basics of robotics and their applications in agriculture
- 4. Apply the IOT concepts in cropping practices
- 5. Interpolate the concept of automation in governing the agricultural systems

Unit-1INTRODUCTION9 hoursFundamental of electronics Passive devices -semiconductor devices - transistors - diode
circuits - amplifier circuits. Integrated circuits and operational amplifier - logic gates - flip flop -
counters digital to analog - analog to digital converters- microprocessor.9 hours

Unit-2

PRECISION FARMING

9 hours

Precision farming -Ground based sensors, Remote sensing, GPS, GIS and mapping software, Yield mapping systems, Crop production modelling

Unit-3

ROBOTICS IN AGRICULTURE

9 hours

Fundamental of Robotics - types – application. Agricultural robots - types- function - application. Future trends in automation in agriculture

Unit-4

AUTOMATION USING IoT

9 hours

Use of different sensors - Temperature and humidity sensor - Soil Moisture Sensor - Water Level Depth Detector, Raspberry Pi Arduino UNO

Unit-5

AUTOMATION OF AGRICULTURE OPERATION

9 hours

Automation of agricultural operations using IoT based systems - Smart Irrigation System Automation in Greenhouse – Drones. Case Study- Automation of greenhouse/farm operations

Total Lecture hours: 45 hours

Text Book(s)

- 1. Zhang, Q. and Pierce, F.J. eds., 2013. Agricultural automation: fundamentals and practices. CRC Press
- Choudhury, A., Biswas, A., Singh, T.P. and Ghosh, S.K. eds., 2022. Smart Agriculture
 Automation Using Advanced Technologies: Data Analytics and Machine Learning, Cloud Architecture, Automation and IoT.

Refer	ence Books
1.	National Research Council, Precision Agriculture in the 21st Century, National
	Academies Press, Canada, 1997.
2.	Young, S.L. and Pierce, F.J. eds., 2013. Automation: The future of weed control in
	cropping systems. Springer Science & Business Media
2	Nof, S.Y. ed., 2009. Springer handbook of automation. Berlin, Heidelberg: Springer
З.	Berlin Heidelberg.

Course Code	Course Title	L	Т	Ρ	J	С
22AGPE37	LANDSCAPE ARCHITECTURE	3	0	0	0	3
Pre-requisite		Sy ve	llab rsio	ous on	V	. 1.0

Course Objectives:

- 1. To understand the paradigms in landscape architecture in the post-industrial revolution era and to understand the multifaceted dimensions of landscape architecture such as ecology, environment and sustainability.
- 2. To study the contemporary landscape and the manifestation in the western and Indian Contexts

Course Outcome:

- 1. To equip the students to do landscape working drawings and preparation of bill of quantities and estimation.
- 2. To understand the design solutions for larger sites and express the same using models.
- 3. To understand the different concepts of landscape formulations.
- 4. To acquire the knowledge of illumination and lighting.
- 5. To obtain the knowledge on design of water bodies and irrigation systems.

Unit-1

BASICS OF LANDSCAPE ARCHITECTURE

9 hours

Site analysis, synthesis, suitability, landscape zoning and planning with landscape land uses for medium to large scale projects. Evolving an open space structure for the site and suggesting a suitable landscape treatment with respect to ecological, functional, cultural and visual contexts.

Unit-2

LANDSCAPE FORMULATIONS

9 hours

Process for landscape project formulation and landscape design development based on synthesis. Examining how humans occupy exterior space and combines this information with the principles of design to create garden scale models.

Unit-3

SITE MOBILIZATION

9 hours

Site mobilization; Sequence of site activity, site protection measures, site implementation checklist. Design and detailing of hard landscapes. Roads, paying, barriers, edge conditions -				
functio	ns, types, criteria for selection, design aspects, details.	ge contaitione		
Unit-4	ILLUMINATION	9 hours		
Outdoo	or lighting: Definition of technical terms, types of electrical lighting, typ	bes of fixtures,		
auxilia	y fixtures. Principles of design for outdoor illumination, design and type	of effects with		
electric	al lighting. Safety precautions and drawbacks of electrical lighting, electric	cal accessories		
and the	eir installation. Solar energy and lighting.			
Unit-5	IRRIGATION FEATURES	9 hours		
Water	features and Irrigation systems: Design of water features such as sw	imming pools,		
cascac	es, fountains etc., and their technical requirements. Consideration for de	sign and detail		
of wate	r bodies and natural ponds. Design of irrigation system – landscape area	types, Course		
Overvi	ews and design, water needs and sources, application, methods of insta	llation. Control		
system	s, scheduling and maintenance.			
	Total Lecture hours:	45 hours		
Text B	ook(s)			
	Simonds. J. O. 1961. Landscape Architecture: The Shaping of Environment E.W. Dodge Cooperation London Harris C.W. and Din N	Man's Natural T 1997 Time		
1.	Saver Standards for Landscape Architecture, Mcgraw – Hill Internationa	I Edition Arch		
	Series			
_	Starke.B. and Simonds, J. O. 2013. Landscape Architecture: A Manual o	f Site Planning		
2.	and Design. 5th edition. McGraw-Hill Professional.	· · ·		
Reference Books				
1	Shaheer, M., Dua, G.W. and Pal, A.2012. Landscape Architecture in In	dia: A Reader.		
1.	Indian Journal of Landscape Architecture.			
2.	Reid, G. W. 1993. From Concept to Form: In Landscape Design. John V	Viley & Sons.		

Course Code	Course Title	L	Т	Ρ	J	С	
22AGPE38	SOFTWARE APPLICATIONS IN SOIL & WATER	3	0	0	0	3	
Pre-requisite		Sy ve	llab rsio	ous on	V	1.0	
Course Objectiv	ves:						
•							
Course Outcome:							

• Make use of cropwat software for estimation of crop water requirement parameters

• Determine yield and water productivity using AquaCrop.

- Evaluate surface irrigation methods using Surdev software.
- Explain the usage of Surfer software for preparation of contour maps. Explain watershed delineation using ArcSWAT software

Unit-1 Cropwat

9 hours

Conventions used in manual: Crop water requirement, soil moisture deficit, Reference crop 138 vapotranspiration Introduction, Installation, User interface and menu system: main route through the programme, Data needed for calculation, data file names & directories; Main menu options: File menu, Input data menu, schedule menu; Tables & graphs; Save report menu; options menu; help menu; Scehduling scenarious; User defined irrigations; Capillary rise and percolation: User adjustments; Exporting results files to a spreadsheet.

Unit-2 AquaCrop

9 hours

Introduction: The aquacrop model, Practical applications, The calculation scheme of Aquacrop, Input requirement, Limitations. Climate: Required weather data to run AquaCrop, Reference Evapotranspiration, Determination of Reference Evapotranspiration, Import climatic data. Soil: Soil water retention and soil water movement, soil profile characteristics, Depth & quality of the groundwater table. Crop: Crop parameters, Stress coefficients, crop development (step 1), Crop transpiration (Step 2), Biomass production (step 3), Yield formation (step 4), Water productivity. Management: Irrigation management, Field management, Calibration of soil fertility. Simulation: Initial conditions at start of simulation period, Start of the growing cycle, Soil salinity, Effect of climate change, Evaluation of simulations.

Unit-3 Surdev

9 hours

Introduction, Parameters and variables involved: a) Field parameters b) Decision variables c) Evaluation variables. Surdev package: Hardware requirements and installation procedure; Menus, keyboard usage, & function keys, Calculation, Files. Basedev, Bordev & Furdev: Menu structure, Input windows, Output window, Error messages, Assumptions & limitations, Program usage, Sample problems. Program applications.

Unit-4 Surfer

9 hours

Introduction; Tutorial; Data files & worksheet; Creating grid files; Introduction to variograms; Grid editor; Grid operations; Base maps; Contour maps; Post & classed post maps; 3D surface maps; 3D wireframe maps, color relief maps; Grid values maps; Watershed maps; Vector maps; Pont cloud maps; Viewshed layers; Downloading layers from a server; Map properties; Map features; 3D view; Map tools; Layer tools; Coordinate system; Creating and editing features; Common properties; Selecting & arranging objects; Changing the view; Importing, exporting & printing; Options, defaults & customizations; Automating surfer.

9 hours

Introduction; Installing the interface; Preparing input; ArcSWAT toolbar items; Managing projects; Help menu; Migrating from ArcSWAT 1.x to ArcSWAT 2.x; Watershed Delineation; HRU Analysis; Import weather data; Creation of input; Input modification; SWAT Simulation; SWAT database editors; create, process & run example dataset

Total Lecture hours: 45 hours

Text E	Book(s)
1.	Introduction; Installing the interface; Preparing input; ArcSWAT toolbar items; Managing projects; Help menu; Migrating from ArcSWAT 1.x to ArcSWAT 2.x; Watershed Delineation; HRU Analysis; Import weather data; Creation of input; Input modification; SWAT Simulation; SWAT database editors; create, process & run example dataset
2.	Dirk Raes, FAO. 2017 AquaCrop training handbook I. Understanding AquaCrop. FAO Publishers.
Refer	ence Books
1.	Jurriens M, Zerihun D, Boonstra J and Feyen J. 2001. SURDEV: Surface Irrigation Software, Design operation and evaluation of basin, border and furrow irrigation. ILRI publications, Waheningen, The Netherlands
2.	https://www.fao.org/3/i6051e/i6051e.pdf http://downloads.goldensoftware.com/guides/Surfer12_Users_Guide_Preview.pdf http://colinmayfield.com/public/PDF_files/ArcSWAT_Documentation.pdf

Course Code	Course Title	L	Т	Ρ	J	С		
22AGPE39	FUNDAMENTALS OF MANAGEMENT FOR ENGINEERS	3	0	0	0	3		
Pre-requisite		Sy ve	llab ersio	ous on	V	. 1.0		
Course Objecti	ves:							
• L	Inderstand the management concepts							
• A	 Applications of concepts in practical aspects of business 							
• [Development of managerial skills for engineers 							
• C	Organizations develop and maintain competitive advanta	ge						
• B c	 Business decisions are made using various tools and techniques to remain competitive 							
Course Outcon	ne:							
1. Understa	and the significance of management in particular profess	sion						
2. Understa	Understand the various management functions							
3. The students can explore the management practices in their domain area								
Understand the management concepts								
5. Analyze	5. Analyze the concepts of management							

Unit-1 Introduction to Management:

Evolution of Management, Nature & Scope-Functions of ManagementRole of Manager-levels of Management-Managerial Skills - Challenges-Planning-Planning ProcessTypes of Plans-MBO

Unit-2 Organization Structure & HRM:

Organization Design-Organizational Structure-Departmentation– DelegationCentralization -Decentralization-Recentralization-Organizational Culture- Organizational climate-Organizational change Human Resource Management-HR Planning - Recruitment & Selection - Training & DevelopmentPerformance appraisal - Job satisfaction-Stress Management Practices

Unit-3 Operation Management:

9 hours

9 hours

9 hours

Introduction to Operations Management-Principles and Types of Plant Layout-Methods of production (Job Batch and Mass production) - Method study and Work Measurement-Quality Management - TQM-Six sigma - Deming's Contribution to Quality - Inventory Management – EOQ - ABC Analysis - JIT System-Business Process Reengineering (BPR)

Unit-4 Marketing Management:

9 hours

9 hours

Introduction to Marketing-Functions of Marketing-Marketing vs. SellingMarketing Mix -Marketing Strategies - Product Life Cycle - Market Segmentation -Types of Marketing -Direct Marketing-Network Marketing - Digital Marketing-Channels of Distribution -Supply Chain Management (SCM)

Unit-5 Project Management

Introduction to Project Management-steps in Project Management - Project Planning -Project Life Cycle-Network Analysis-Program Evaluation & Review Technique (PERT)-Critical Path Method (CPM) - Project Cost Analysis - Project Crashing - Project Information Systems

Total Lecture hours: 45 hours

Text Book(s)

1	Management Essentials, Andrew DuBrin, 9e, Cengage Learning, 2012.
1.	
2	Fundamentals of Management, Stephen P Robbins, Pearson Education, 2009
Ζ.	
Refer	ence Books
1.	Essentials of Management, Koontz Kleihrich, Tata Mc - Graw Hill.

Management Fundamentals, Robert N Lussier, 5e, Cengage Learning, 2013. 2.

MANDATORY COURSES I									
Course	Code	Course Title	L	Т	Ρ	J	С		
22MCT	001	INTRODUCTION TO WOMEN AND GENDER STUDIES	3 0 0		0	0			
Pre-requ	uisite		Syllabus version		us on v. 1.0				
Unit-1		CONCEPTS			9 hours				
Sex vs. Gender, masculinity, femininity, socialization, patriarchy, public/ private, essentialism, binaryism, power, hegemony, hierarchy, stereotype, gender roles, gender relation, deconstruction, resistance, sexual division of labour.									
Unit-2		FEMINIST THEORY			9 h	ours	•		
Liberal M	/arxist	Socialist Radical Psychoanalytic postmodernist ecofe	min	ist	• 11	oure			
Liberal, I									
Unit-3	WO	MEN'S MOVEMENTS: GLOBAL, NATIONAL AND LO	CAL		9 hours		5		
Rise of F	eminisr	n in Europe and America.							
Women's	Mover	nent in India							
Unit-4		GENDER AND LANGUAGE			9 h	ours	5		
Linguistic	Forms	and Gender.							
Gender a	ind nari	atives							
Unit-5	GENDER AND REPRESENTATION					ours	5		
Advertisir	ng and	popular visual media.							
Gender a	ind Rep	presentation in Alternative Media.							
Gender a	ind soc	ial media							
	Total Lecture hours: 45 hours								

Course Code	Course Title	L	Т	Ρ	J	С	
22MCT002	ELEMENTS OF LITERATURE	3	0	0	0	0	
Pro-requisite		Syllabus		v	v 10		
Therequisite		ve	rsi	on	v	. 1.0	
Course Objecti	ves:						
1. To make the students aware about the finer sensibilities of human existence through an							
art form. The students will learn to appreciate different forms of literature as suitable							
modes of expressing human experience.							

Course Outcome:

• Students will be able to understand the relevance of literature in human life and appreciate its aspects in developing finer sensibilities.

1. COURSE CONTENTS

Introduction to Elements of Literature

1. Relevance of literature

- a) Enhances Reading, thinking, discussing and writing skills.
- b) Develops finer sensibility for better human relationship.
- c) Increases understanding of the problem of humanity without bias.
- d) Providing space to reconcile and get a cathartic effect.

2. Elements of fiction

- a) Fiction, fact and literary truth.
- b) Fictional modes and patterns.
- c) Plot character and perspective.

3. Elements of poetry

- a) Emotions and imaginations.
- b) Figurative language.
- c) (Simile, metaphor, conceit, symbol, pun and irony).
- d) Personification and animation.
- e) Rhetoric and trend.

4. Elements of drama

- a) Drama as representational art.
- b) Content mode and elements.
- c) Theatrical performance.
- d) Drama as narration, mediation and persuasion.
- e) Features of tragedy, comedy and satire.

2.READINGS:

- a) An Introduction to the Study of English Literature, W.H. Hudson, Atlantic, 2007.
- b) An Introduction to Literary Studies, Mario Klarer, Routledge, 2013.
- c) The Experience of Poetry, Graham Mode, Open college of Arts with Open Unv Press, 1991.
- d) The Elements of Fiction: A Survey, Ulf Wolf (ed), Wolfstuff, 2114.
- e) The Elements of Drama, J.L.Styan, Literary Licensing, 2011

3. OTHER SESSION:

- 3.1*Tutorials:
- 3.2*Laboratory:

3.3*Project: The students will write a term paper to show their understanding of a particular piece of literature

4.*ASSESSMENT:

4.1HA:

4.2Quizzes-HA:

4.3Periodical Examination: one

4.4Project/Lab: one (under the guidance of the teachers the students will take a volume of poetry, fiction or drama and write a term paper to show their understanding of it in a given

context; sociological, psychological, historical, autobiographical etc. 4.5Final Exam:

Text Book(s)

1	To be decided by the teacher and student, on the basis of individual
1.	student so as to enable him or her to write the term paper.

Course Code	Course Title	L	٦	ГР	J	С			
22MCT003	FILM APPRECIATION	3	C	0 (0	0			
Bro roquicito		Sy	lla	bus	V	1.0			
Fie-requisite		ve	ers	ion	v .	1.0			
Course Objecti	ves:								
1. In this c	ourse on film appreciation, the students will be intro	duce	ed	broa	adly	to the			
developr	nent of film as an art and entertainment form. It will also	o diso	cu	ss the	e lan	guage			
of cinem	of cinema as it evolved over a century. The students will be taught as to how to read a								
film and	appreciate the various nuances of a film as a text. The s	stude	en	ts will	be g	juided			
to study	film joyfully.								
Theme - A: The	Component of Films								
A-1: The	material and equipment								
A-2: The	story, screenplay and script								
A-3: The	actors, crew members, and the director								
A-4: The	process of film making structure of a film								
Theme - B: Evo	lution of Film Language								
B-1: Film	language, form, movement etc.								
B-2: Earl	y cinema… silent film (Particularly French)								
B-3: The	emergence of feature films: Birth of a Nation								
B-4: Talk	ies								
Theme - C: Filn	n Theories and Criticism/Appreciation								
C-1: Rea	list theory; Auteurists								
C-2: Psy	choanalytic, Ideological, Feminists								
C-3: Hov	<i>i</i> to read films?								
C-4: Film	Criticism / Appreciation								
Theme – D: Dev	elopment of Films								
D-1: Rep	resentative Soviet films								
D-2: Rep	resentative Japanese films								
D-3: Rep	resentative Italian films								
D-4: Rep	resentative Hollywood film and the studio system								
Theme - E: Indi	an Films								
E-1: The	early era								
E-2: The	important films made by the directors								
E-3: The	regional films								

E-4: The documentaries in India **READING**:

A Reader containing important articles on films will be prepared and given to the students. The students must read them and present in the class and have discussion on these.

Total Lecture hours: 45 hours

Course Code	Course Title	L	Т	Р	J	С		
	WELL-BEING WITH TRADITIONAL PRACTICES-			-	-			
22MC1004	YOGA, AYURVEDA AND SIDDHA	3	0	0	0	0		
Pre-requisite		Sy	llab	us	v	10		
		ve	rsic	n	v.	1.0		
Course Objecti	ves:							
1. To enjoy	life happily with fun filled new style activities that help to) ma	inta	in h	ealth	i also		
2. To adapt	a few lifestyle changes that will prevent many health dis	sord	ers					
3. To be co	ol and handbill every emotion very smoothly in every wa	alk of	i life)				
4. To learn	4. To learn to eat cost effective but healthy foods that are rich in essential nutrients							
5. To deve	lop immunity naturally that will improve resistance	agai	inst	ma	iny	health		
disorders	3							
Course Outcon	16:							
• Learn the	importance of different components of health							
Gain conf	idence to lead a healthy life							
Learn nev	v techniques to prevent lifestyle health disorders							
Understar	ad the importance of diet and workouts in maintaining health							
Unit-1	HEALTH AND ITS IMPORTANCE			9 h	ours	;		
Health: Definition	on - Importance of maintaining health - More importar	ice c	on p	reve	entio	n than		
treatment Ten ty	pes of health one has to maintain - Physical health -	Men	tal	heal	th -	Social		
health - Financia	al health - Emotional health - Spiritual health - Intellectua	al hea	alth	- Re	elatio	onship		
health - Environi	mental health - Occupational/Professional heath.							
Present health	status - The life expectancy-present status - mortality ra	ate -	dre	adfu	ıl dis	eases		
- Non-communio	cable diseases (NCDs) the leading cause of death - 6	;0%	- h	eart	dise	ase –		
cancer – diabete	es - chronic pulmonary diseases - risk factors – tobacco) – a	lcoł	- Ior	unh	ealthy		
diet - lack of phy	sical activities.			_				
Types of diseas	ses and disorders - Lifestyle disorders – Obesity – Dial	oetes	s - (Card	liova	scular		
diseases – Cancer – Strokes – COPD - Arthritis - Mental health issues.								
Causes of the above diseases / disorders - Importance of prevention of illness - Takes care								
of health - Improves quality of life - Reduces absenteeism - Increase satisfaction - Saves time								
Simple lifestyle	Simple lifestyle modifications to maintain health - Healthy Eating habits (Balanced diet							
according to ac	e) Physical Activities (Stretching exercise, aerobics,	res	istir	ng e	xerc	ise) -		
Maintaining BMI	-Importance and actions to be taken							
	5155		—	<u>.</u>				
Unit-2	DIET			9 h	ours	i		

Role of diet in maintaining health - energy one needs to keep active throughout the day nutrients one needs for growth and repair - helps one to stay strong and healthy - helps to prevent diet-related illness, such as some cancers - keeps active and - helps one to maintain a healthy weight - helps to reduce risk of developing lifestyle disorders like diabetes – arthritis – hypertension – PCOD – infertility – ADHD – sleeplessness -helps to reduce the risk of heart diseases - keeps the teeth and bones strong.

Balanced Diet and its 7 Components - Carbohydrates – Proteins – Fats – Vitamins – Minerals - Fibre and Water.

Food additives and their merits & demerits - Effects of food additives - Types of food additives - Food additives and processed foods - Food additives and their reactions **Definition of BMI and maintaining it with diet**

Importance - Consequences of not maintaining BMI - different steps to maintain optimal BM **Common cooking mistakes** Different cooking methods, merits and demerits of each method

Unit-3 ROLE OF AYURVEDA & SIDDHA SYSTEMS IN MAINTAINING 9 hours HEALTH

AYUSH systems and their role in maintaining health - preventive aspect of AYUSH - AYUSH as a soft therapy.

Secrets of traditional healthy living - Traditional Diet and Nutrition - Regimen of Personal and Social Hygiene - Daily routine (Dinacharya) - Seasonal regimens (Ritucharya) - basic sanitation and healthy living environment - Sadvritta (good conduct) - for conducive social life. Principles of Siddha & Ayurveda systems - Macrocosm and Microcosm theory - Pancheekarana Theory / (Five Element Theory) 96 fundamental Principles - Uyir Thathukkal (TriDosha Theory) - Udal Thathukkal

Prevention of illness with our traditional system of medicine Primary Prevention - To decrease the number of new cases of a disorder or illness - Health promotion/education, and - Specific protective measures - Secondary Prevention - To lower the rate of established cases of a disorder or illness in the population (prevalence) - Tertiary Prevention - To decrease the amount of disability associated with an existing disorder.

Unit-4

MENTAL WELLNESS

9 hours

Emotional health - Definition and types - Three key elements: the subjective experience - the physiological response - the behavioral response - Importance of maintaining emotional health - Role of emotions in daily life -Short term and long term effects of emotional disturbances - Leading a healthy life with emotions - Practices for emotional health - Recognize how thoughts influence emotions - Cultivate positive thoughts - Practice self-compassion - Expressing a full range of emotions.

Stress management - Stress definition - Stress in daily life - How stress affects one's life - Identifying the cause of stress - Symptoms of stress - Managing stress (habits, tools, training, professional help) - Complications of stress mismanagement.

Sleep - Sleep and its importance for mental wellness - Sleep and digestion. Immunity - Types and importance - Ways to develop immunity

Unit-5	YOGA	9 hours						
Defini	tion and importance of yoga - Types of yoga - How to Choose the	Right Kind for						
individ	luals according to their age - The Eight Limbs of Yoga - Simple yogasana	as for cure and						
prevention of health disorders - What yoga can bring to our life.								
Total Lecture hours: 45 hours								
Text E	Text Book(s)							
1	Nutrition and Dietetics - Ashley Martin, Published by White Word Pub	olications, New						
1.	York, NY 10001, USA							
2	Yoga for Beginners_ 35 Simple Yoga Poses to Calm Your Mind and Strengthen Your							
۷.	Body, by Cory Martin, Copyright © 2015 by Althea Press, Berkeley, Cali	fornia						
Refer	ence Books							
1	Yoga for Beginners_ 35 Simple Yoga Poses to Calm Your Mind and St	trengthen Your						
1.	Body, by Cory Martin, Copyright © 2015 by Althea Press, Berkeley, Cali	fornia						
	WHAT WE KNOW ABOUT EMOTIONAL INTELLIGENCE How It Aff	ects Learning,						
2	Work, Relationships, and Our Mental Health, by Moshe Zeidner, Gerald Matthews, and							
۷.	Richard D. Roberts A Bradford Book, The MIT Press, Cambridge, M	Aassachusetts,						
	London, England							

Course Code	Course Title	L	Т	Ρ	J	С
22MCT007	INDUSTRIAL SAFETY	3	0	0	0	0
Pre-requisite		Sy v	Syllabus version		v	. 1.0

Course Objectives:

- 1. To Understand the Introduction and basic Terminologies safety.
- 2. To enable the students to learn about the Important Statutory Regulations and standards.
- 3. To enable students to Conduct and participate the various Safety activities in the Industry.
- 4. To have knowledge about Workplace Exposures and Hazards
- 5. To assess the various Hazards and consequences through various Risk Assessment techniques.

Course Outcome:

on completion of this course the student will be able:

- Understand the basic concept of safety.
- Obtain knowledge of Statutory Regulations and standards.
- Know about the safety Activities of the Working Place.
- Analyze on the impact of Occupational Exposures and their Remedies
- Obtain knowledge of Risk Assessment Techniques

Unit-1	SAFETY TERMINOLOGIES	9 hours					
Hazar	d-Types of Hazard- Risk-Hierarchy of Hazards Control Measures-Lead	indicators- lag					
Indicat	ors-Flammability- Toxicity Time-weighted Average (TWA) - Threshold Li	mitValue (TLV)					
- Shor	Term Exposure Limit (STEL)- Immediately dangerous to life or health (ID	LH)- acute and					
chroni	c Effects- Routes of Chemical Entry-Personnel Protective Equipment- He	alth and Safety					
Policy	Material Safety Data Sheet MSDS						
Unit-2	STANDARDS AND REGULATIONS	9 hours					
Indian	Factories Act-1948- Health- Safety- Hazardous materials and Welfare- IS	SO 45001:2018					
occupa	ational health and safety (OH&S) - Occupational Safety and Health Audit	1514489:1998-					
падаю	I denuncation and Risk Analysis- code of practice 15 15656.2006						
IInit_2		0 hours					
Unit-5	SAFETT ACTIVITIES	9 110015					
Tool b	ox Talk- Role of safety Committee- Responsibilities of Safety Office	ers and Safety					
Repre	sentatives- Safety Training and Safety Incentives- Mock Drills- On-site Em	ergency Action					
Plan- (Off-site Emergency Action Plan- Safety poster and Display- Human Error	Assessment					
Unit-4	WORKPLACE HEALTH AND SAFETY	9 hours					
Noise	hazard- Particulate matter- musculoskeletal disorder improper sitting po	ster and lifting					
Ergon	omics RULE & REBA- Unsafe act & Unsafe Condition- Electrical H	azards- Crane					
Safety	Toxic gas Release						
		-					
Unit-5	HAZARD IDENTIFICATION TECHNIQUES	9 hours					
Job Sa	afety Analysis-Preliminary Hazard Analysis-Failure mode and Effects Ar	alysis- Hazard					
and O	perability- Fault Tree Analysis- Event Tree Analysis Qualitative and Qu	antitative Risk					
Asses	sment- Checklist Analysis- Root cause analysis- What-If Analysis	- and Hazard					
Identif	cation and Risk Assessment						
	Total Lecture hours:	45 hours					
Text E	ook(s)						
	R.K. Jain and Prof. Sunil S. Rao Industrial Safety Health and Environmer	nt Management					
1.	Systems KHANNA PUBLISHER	gement					
6	L. M. Deshmukh Industrial Safety Management: Hazard Identification ar	nd Risk Control					
2.	McGraw-Hill Education	-					
Refere	Reference Books						
	Frank Lees (2012) 'Lees' Loss Prevention in Process Industrie	as Buttonworth					
1.	Heinemann publications LIK 4th Edition						
2.	John Ridley & John Channing (2008)Safety at Work: Routledge, 7th Edi	tion.					
3	Dan Petersen (2003) Techniques of Safety Management: A System App	broach					
4	Alan Waring.(1996).Safety management system: Chapman &Hall,Engla	nd					

5.	Society of Safety Engineers, USA	

MANDATORY COURSES II

Course Code	Course Title	L T P J C								
22MCT012	DISASTER RISK REDUCTION AND MANAGEMENT	3	0	0	0	0				
Pre-requisite		Sy	llab	us	v	1.0				
		Ve	ersio	on						
Course Objectiv	ves:									
1. To impar	t knowledge on concepts related to disaster, disaster i	isk r	edu	ictio	n, di	saster				
manager	nent									
2. To acqua	2. To acquaint with the skills for planning and organizing disaster response									
Course Outcom	201									
	rt knowledge on the concents of Disactor Mulhershi	lity o	nd	Dic	octo	r Dick				
• To Impai reduction	(DRR)	iity e	anu	DIS	asie	RISK				
To enhar	nce understanding on Hazards. Vulnerability and Disa	ster	Ris	k A	sses	sment				
preventio	on and risk reduction	0.01				00				
To develop	op disaster response skills by adopting relevant tools ar	nd te	chn	oloc	IV					
Enhance	awareness of institutional processes for Disaster respo	nse	in t	he c	ount	rv				
Develop	rudimentary ability to respond to their surroundings	with	pot	entia	al Di	saster				
response	in areas where they live, with due sensitivity		•							
Unit-1	HAZARDS, VULNERABILITY AND DISASTER RIS	SKS		9 h	ours	5				
Definition: Disas	ter, Hazard, Vulnerability, Resilience, Risks - Types	of D	Disa	ster	s: N	atural,				
Human induced,	Climate change induced -Earthquake, Landslide, Floo	od, C	νοι	ight,	Fire	e etc –				
Technological di	sasters- Structural collapse, Industrial accidents, oil s	pills	-Ca	ause	s, In	npacts				
including social	, Economic, political, environmental, health, psycho	soci	al,	etc.	- Di	saster				
vulnerability pro	file of India and Tamil Nadu - Global trends in disas	sters	: ur	ban	disa	asters,				
pandemics, Con	nplex emergencies,, Inter relations between Disa	sters	ar	nd S	usta	inable				
development Go	als									
Unit-2			~	<u>9 n</u>	ours	š				
Sendal Framewo	ork for Disaster Risk Reduction, Disaster cycle - Phas	ses,	Cu	Iture	Of S	safety,				
prevention, mitig	jation and preparedness community Based DRR, St	ructu	Irai	- no	nstru	lctural				
measures, Roles and responsibilities of- community, Panchayati Raj Institutions / Urban Local										
Bodies (PRIS/ULBS), States, Centre, and other stakeholders- Early Warning System –										
Advisories from Appropriate Agencies Relevance of indigenous Knowledge, appropriate										
technology and Local resources										
Linit-3				0 h	0.00					
				311	ours					
Components of	Disaster Management – Preparedness of rescue	and	rel	ief,	mitig	gation,				
rehabilitation and	d reconstruction- Disaster Risk Management and post d	isast	ter i	man	ager	nent –				

Compensation and Insurance- Disaster Management Act (2005) and Policy - Other related policies, plans, programmers and legislation - Institutional Processes and Framework at State and Central Level- (NDMA – SDMA-DDMA-NRDF- Civic Volunteers)

Unit-4 TOOLS AND TECHNOLOGY FOR DISASTER MANAGEMENT

9 hours

Early warning systems -Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment. -Elements of Climate Resilient Development -Standard operation Procedure for disaster response – Financial planning for disaster Management

Unit-5

DISASTER MANAGEMENT: CASE STUDIES

9 hours

Discussion on selected case studies to analyse the potential impacts and actions in the contest of disasters-Landslide Hazard Zonation: Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.- Field work-Mock drill

Total Lecture hours

'S:	45	hours
-----	----	-------

Text E	Book(s)			
1.	Taimpo (2016), Disaster Management and Preparedness, CRC Publications			
2.	Singh R (2017), Disaster Management Guidelines for earthquakes, Landslides, Avalanches and tsunami, Horizon Press Publications			
3.	Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN13: 978-9380386423			
4.	Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361]			
Reference Books				
1.	Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005			
2.	Government of India, National Disaster Management Policy, 2009.			
3.	Shaw R (2016), Community based Disaster risk reduction, Oxford University Press			

Course	Code	Course Title	L	Т	Ρ	J	С
22MCT	009	HISTORY OF SCIENCE AND TECHNOLOGY IN INDIA	3	0	0	0	0
Pre-requisite			Sy ve	llab ersio	ous on	V	. 1.0
Unit-1		CONCEPTS AND PERSPECTIVES				9 h	ours

Meaning of History Objectivity, Determinism, Relativism, Causation, Generalization in History; Moral judgment in history Extent of subjectivity, contrast with physical sciences, interpretation and speculation, causation verses evidence, concept of historical inevitability, Historical Positivism. Science and Technology-Meaning, Scope and Importance, Interaction of science, technology & society, Sources of history on science and technology in India

Unit-2 HISTORIOGRAPHY OF SCIENCE AND TECHNOLOGY IN INDIA 9 hours

Introduction to the works of D.D. Kosambi, Dharmpal, Debiprasad Chattopadhyay, Rehman, S. Irfan Habib, Deepak Kumar, Dhruv Raina, and others.

Unit-3

SCIENCE AND TECHNOLOGY IN ANCIENT INDIA

9 hours

Technology in pre-historic period Beginning of agriculture and its impact on technology Science and Technology during Vedic and Later Vedic times Science and technology from 1st century AD to C-1200.

Unit-4 SCIENCE AND TECHNOLOGY IN MEDIEVAL INDIA

9 hours

Legacy of technology in Medieval India, Interactions with Arabs Development in medical knowledge, interaction between Unani and Ayurveda and alchemy Astronomy and Mathematics: interaction with Arabic Sciences Science and Technology on the eve of British conquest

Unit-5	SCIENCE AND TECHNOLOGY IN COLONIAL AND POST	9 hours
	INDEPENDENCE INDIA	

Science and the Empire Indian response to Western Science Growth of techno-scientific institutions

Science, Technology and Development discourse Shaping of the Science and Technology Policy Developments in the field of Science and Technology Science and technology in globalizing India Social implications of new technologies like the Information Technology and Biotechnology

Total Lecture hours: 45 hours

Course Code	Course Title	L	Т	Ρ	J	С	
22MCT010	POLITICAL AND ECONOMIC THOUGHT FOR A HUMANE SOCIETY	3	0	0	0	0	
Pre-requisite	Desirable: Universal Human Values	Syllabus version		v. 1.0			
Course Objectives:							
1. This course will begin with a short overview of human needs and desires and how different political-economic systems try to fullfill them. In the process, we will end with a critique of different systems and their implementations in the past, with possible future directions							

Course Outcome:

• The students will get an understanding of how societies are shaped by philosophy, political and economic system, how they relate to fulfilling human goals & desires with some case studies of how different attempts have been made in the past and how they have fared

COURSE TOPICS:

- Considerations for humane society, holistic thought, human being's desires, harmony in self, harmony in relationships, society, and nature, societal systems. (9 lectures, 1 hour each) (Refs: A Nagaraj, M K Gandhi, JC Kumarappa)
- Capitalism Free markets, demand-supply, perfect competition, laissez-faire, monopolies, imperialism. Liberal democracy. (5 lectures) (Refs: Adam smith, J S Mill)
- Fascism and totalitarianism. World war I and II. Cold war. (2 lectures)
- Communism Mode of production, theory of labour, surplus value, class struggle, dialectical materialism, historical materialism, Russian and Chinese models. (Refs: Marx, Lenin, Mao, M N Roy) (5 lectures)
- Welfare state. Relation with human desires. Empowered human beings, satisfaction. (3 lectures)
- Gandhian thought. Swaraj, Decentralized economy & polity, Community. Control over one's lives. Relationship with nature. (6 lectures) (Refs: M K Gandhi, Schumacher, Kumarappa)
- Essential elements of Indian civilization. (3 lectures) (Refs: Pt Sundarlal, R C Mazumdar, Dharampal)
- Technology as driver of society, Role of education in shaping of society. Future directions. (4 lectures) (Refs: Nandkishore Acharya, David Dixon, Levis Mumford)
- Conclusion (2 lectures)

Total Lecture hours: 45 hours

Course Code	Course Title	L	Т	Ρ	J	С
22MCT011	STATE, NATION BUILDING AND POLITICS IN INDIA	3	0	0	0	0
Pre-requisite		Sy ve	llab rsio	ous on	V	. 1.0

Course Objectives:

1. The objective of the course is to provide an understanding of the state, how it works through its main organs, primacy of politics and political process, the concept of sovereignty and its changing contours in a globalized world. In the light of this, an attempt will be made to acquaint the students with the main development and legacies of national movement and constitutional development in India, reasons for adopting a Parliamentary-federal system, the broad philosophy of the Constitution of India and the changing nature of Indian Political System. Challenges/ problems and issues concerning national integration and nation-building will also be discussed in the contemporary context with the aim of developing a future vision for a better India.

Cours	se Outcome:				
• Unit-1	It is expected that this course will make students aware of the theoretical state, its organs, its operationalization aspect, the background and philo the founding of the present political system, broad streams and challenge integration and nation-building in India. It will equip the students with the understanding of our political system/ process in correct perspective and sit up and think for devising ways for better participation in the system we making the governance and delivery system better for the common mar left unheard and unattended in our democratic setup besides generating dissatisfaction and difficulties for the system.	al aspect of the psophy behind ges of national e real d make them vith a view to n who is often g a lot of 9 hours			
Under	standing the need and role of State and politics. Development o	f Nation-State,			
sovere	eignty, sovereignty in a globalized world				
Unit-2	ORGANS OF STATE	9 hours			
Organ	s of State – Executive, Legislature, Judiciary, Separation of powers, forms	of government			
unitar	y-federal, Presidential-Parliamentary,	3			
Unit-3	1857 REVOLT	9 hours			
The id	lea of India. 1857 and the national awakening.				
i i					
Unit-4	INC	9 hours			
Unit-4 1885 Const federa	INC Indian National Congress and development of national movement – its lea itution making and the Constitution of India. Goals, objective and philosop Il system? National integration and nation-building.	9 hours gacies. bhy. Why a			
Unit-4 1885 Const federa Unit-5	INC Indian National Congress and development of national movement – its least itution making and the Constitution of India. Goals, objective and philosop al system? National integration and nation-building.	9 hours gacies. bhy. Why a 9 hours			
Unit-4 1885 Const federa Unit-5 Challe	INC Indian National Congress and development of national movement – its legitution making and the Constitution of India. Goals, objective and philosopal system? National integration and nation-building.	9 hours gacies. bhy. Why a 9 hours ovements. The			
Unit-4 1885 Const federa Unit-5 Challe chang	INC Indian National Congress and development of national movement – its legitution making and the Constitution of India. Goals, objective and philosopal system? National integration and nation-building. CURRENT SCENARIOS enges of nation-building – State against democracy (Kothari) New social ming nature of Indian Political System, the future scenario. What can we define the future scenario.	9 hours gacies. ohy. Why a 9 hours ovements. The o?			
Unit-4 1885 Const federa Unit-5 Challe chang	INC Indian National Congress and development of national movement – its least itution making and the Constitution of India. Goals, objective and philosop al system? National integration and nation-building. CURRENT SCENARIOS enges of nation-building – State against democracy (Kothari) New social m ing nature of Indian Political System, the future scenario. What can we do Total Lecture hours:	 9 hours gacies. bhy. Why a 9 hours ovements. The o? 45 hours 			
Unit-4 1885 Const federa Unit-5 Challe chang	INC Indian National Congress and development of national movement – its least itution making and the Constitution of India. Goals, objective and philosop al system? National integration and nation-building. CURRENT SCENARIOS enges of nation-building – State against democracy (Kothari) New social m ing nature of Indian Political System, the future scenario. What can we do Total Lecture hours: Book(s)	 9 hours gacies. bhy. Why a 9 hours ovements. The o? 45 hours 			
Unit-4 1885 Const federa Unit-5 Challe chang Text E	INC Indian National Congress and development of national movement – its legitution making and the Constitution of India. Goals, objective and philosopal system? National integration and nation-building. CURRENT SCENARIOS enges of nation-building – State against democracy (Kothari) New social ming nature of Indian Political System, the future scenario. What can we democracy (Kothari) New social ming nature of Indian Political System, the future scenario. What can we democracy (Social Lecture hours: Book(s) Sunil Khilnani, The Idea of India. Penguin India Ltd., New Delhi	9 hours gacies. ohy. Why a 9 hours ovements. The o? 45 hours			
Unit-4 1885 Const federa Unit-5 Challe chang Text E 1. 2.	INC Indian National Congress and development of national movement – its legitution making and the Constitution of India. Goals, objective and philosopal system? National integration and nation-building. CURRENT SCENARIOS enges of nation-building – State against democracy (Kothari) New social ming nature of Indian Political System, the future scenario. What can we democracy (Kothari) New social ming nature of Indian Political System, the future scenario. What can we democracy (Society Constitution) New Social ming nature of Indian Political System, the future scenario. What can we democracy (Society Constitution) New Social ming nature of Indian Political System, the future scenario. What can we democracy (Society Constitution) New Social Matharity New Social Mathary Khosla, The Indian Constitution, Oxford University Press. New Society New Social Mathary Khosla, The Indian Constitution, Oxford University Press. New Society New Society Press. New So	9 hours gacies. ohy. Why a 9 hours ovements. The o? 45 hours Delhi, 2012			
Unit-4 1885 Const federa Unit-5 Challe chang Text E 1. 2. 3.	INC Indian National Congress and development of national movement – its leavitution making and the Constitution of India. Goals, objective and philosop al system? National integration and nation-building. CURRENT SCENARIOS enges of nation-building – State against democracy (Kothari) New social ming ing nature of Indian Political System, the future scenario. What can we down Total Lecture hours: Book(s) Sunil Khilnani, The Idea of India. Penguin India Ltd., New Delhi Madhav Khosla, The Indian Constitution, Oxford University Press. New Brij Kishore Sharma, Introduction to the Indian Constitution, PHI, Ne edition	 9 hours gacies. ohy. Why a 9 hours ovements. The o? 45 hours Delhi, 2012 w Delhi, latest 			
Unit-4 1885 Const federa Unit-5 Challe chang Text E 1. 2. 3. 4.	INC Indian National Congress and development of national movement – its legitution making and the Constitution of India. Goals, objective and philosopal system? National integration and nation-building. Image: CURRENT SCENARIOS Ing es of nation-building – State against democracy (Kothari) New social ming nature of Indian Political System, the future scenario. What can we deter the transformer of Indian Political System, the future scenario. What can we deter the transformer of Indian Political System, the future scenario. What can we deter the transformer of Indian Constitution, Oxford University Press. New Brij Kishore Sharma, Introduction to the Indian Constitution, PHI, Neter edition Sumantra Bose, Transforming India: Challenges to the World's Large Picador India, 2013.	9 hours gacies. ohy. Why a 9 hours ovements. The o? 45 hours Delhi, 2012 w Delhi, latest est Democracy,			

6.	M. P. Singh and Rekha Saxena, Indian Politics: Contemporary Issues and Concerns, PHI, New Delhi, 2008, latest edition.
7.	Rajni Kothari, Rethinking Democracy, Orient Longman, New Delhi, 2005.

OPEN ELECTIVES

OFFERED BY DEPARTMENT OF AGRICULTURAL ENGINEERING

	OPEN ELECTIVES – I					
Course Code	Course Title	L	Т	Ρ	J	С
22AGOE01	TRADITIONAL INDIAN FOODS	3	0	0	0	3
Pre-requisite	NIL	Syllabus version v.		. 1.0		
Course Objectives:						
To help student	s acquire a sound knowledge on diversities of foods, foo	d ha	bits	anc	d pat	terns
in India with foc	us on traditional foods.					
Course Outcor	ne:					
1. To unde	rstand the historical and traditional perspective of foods	and	foo	d ha	bits	
2. To unde	rstand the processing methods of grains					
3. To unde	rstand the traditional food processing pattern					
4. To unde	rstand the commercial values of traditional foods					
5. To gain	knowledge on health benefits of traditional food					
Unit-1 HIST	ORICAL AND CULTURAL PERSPECTIVES			9 h	ours	;
Food production	n and accessibility - subsistence foraging, horticul	ture,	а	gricu	ulture	and ;
pastoralization,	origin of agriculture, earliest crops grown. Food as	s so	ourc	;e o	f ph	ysical
sustenance, foo	d as religious and cultural symbols; importance of food in	und	erst	tand	ing h	uman
culture - variabil	ity, diversity, from basic ingredients to food preparation; i	mpa	ct c	of cu	stom	is and
traditions on fo	od habits, heterogeneity within cultures (social groups	s) ar	าป	spea	cific	social
contexts - festiv	e occasions, specific religious festivals, mourning etc.	Kos	she	r, Ha	alal f	ioods;
foods for religio	us and other fasts					
Unit-2 TRAD	DITIONAL METHODS OF FOOD PROCESSING			9 h	ours	;
Traditional meth	ods of milling grains – rice, wheat and corn – equipme	ents a	and	l pro	cess	es as
compared to modern methods. Equipments and processes for edible oil extraction, paneer,						
outter and ghee manufacture – comparison of traditional and modern methods. Energy costs,						
efficiency, 200	vield, shelf life and nutrient content comparisons. Tradit	iona	l m	etho	ds o	f food
preservation - s	undrying, osmotic drying, brining, pickling and smoking.					

Unit-3 TRADITIONAL FOOD PATTERNS 9 hours Typical breakfast, meal and snack foods of different regions of India. Regional foods that have gone Pan Indian / Global. Popular regional foods: Traditional fermented foods, pickles and preserves, beverages, snacks, desserts and sweets, street foods; IPR issues in traditional foods Unit-4 COMMERCIAL PRODUCTION OF TRADITIONAL FOODS 9 hours Commercial production of traditional breads, snacks, ready-to-eat foods and instant mixes, frozen foods - types marketed, turnover; role of SHGs, SMES industries, national and multinational companies; commercial production and packaging of traditional beverages such as tender coconut water, neera, lassi, buttermilk, dahi. Commercial production of intermediate foods - ginger and garlic pastes, tamarind pastes, masalas (spice mixes), idli and dosa batters. Unit-5 **HEALTH ASPECTS OF TRADIONAL FOODS** 9 hours Comparison of traditional foods with typical fast foods / junk foods - cost, food safety, nutrient composition, bioactive components; energy and environmental costs of traditional foods; traditional foods used for specific ailments /illnesses. Total Lecture hours: 45 hours Text Book(s) Sen, Colleen Taylor "Food Culture in India" Greenwood Press, 2005 1. Davidar, Ruth N. "Indian Food Science: A Health and Nutrition Guide to Traditional

2.	Recipes: East West Books, 2001.

Course Code	Course Title	L	Т	Ρ	J	С			
22AGOE02	BIODIVERSITY CONSERVATION	3	0	0	0	3			
Pre-requisite	NIL	Sy ve	llab rsio	ous on	us n v. 1				
Course Objecti	Course Objectives:								

The identification of different aspects of biological diversity and conservation techniques

Course Outcome:

Upon successful completion of this course, students will:

- 1. An insight into the structure and function of diversity for ecosystem stability.
- 2. Understand the concept of animal diversity and taxonomy
- 3. Understand socio-economic issues pertaining to biodiversity
- 4. An understanding of biodiversity in community resource management.
- 5. Student can apply fundamental knowledge of biodiversity conservation to solve problems associated with infrastructure development
| Unit-1 | INTRODUCTION | 9 hours | | | | | | |
|--|---|---|--|--|--|--|--|--|
| Concept of Species, Variation; Introduction to Major Plant Groups; Evolutionary relationships | | | | | | | | |
| between Plant Groups; Nomenclature and History of plant taxonomy; Systems of Classification | | | | | | | | |
| and thei | ir Application; Study of Plant Groups; Study of Identification Charac | cters; Study of | | | | | | |
| importan | t families of Angiosperms; Plant Diversity Application | | | | | | | |
| | | 0.1 | | | | | | |
| Unit-2 | | 9 hours | | | | | | |
| Principle | es and Rules of Taxonomy; ICZN Rules, Animal Study Techniques; Cond | cepts of Laxon, | | | | | | |
| Vortobra | tes, Fully tionary relationships between Animal Groups | , inventebrates, | | | | | | |
| Venebra | ites, Evolutionary relationships between Animal Groups. | | | | | | | |
| Unit-3 | MICROBIAL DIVERSITY | 9 hours | | | | | | |
| | | | | | | | | |
| Species, Criteria for Classification, Outline Classification of Microorganisms (Bacteria, Viruses and Protozoa); Criteria for Classification and Identification of Fungi; Chemical and Biochemical Methods of Microbial Diversity Analysis | | | | | | | | |
| | | | | | | | | |
| Unit-4
Biodivers
Factors
Diversity
Biodivers | MEGA DIVERSITY
sity Hot-spots, Floristic and Faunal Regions in India and World; IUCN Re
affecting Diversity, Impact of Exotic Species and Human Disturbar
y, Dispersal, Diversity-Stability Relationship; Socio- economic Iss
sity; Sustainable Utilization of Bioresources: National Movement | 9 hours
ed List;
nce on
ues of
ts and | | | | | | |
| Unit-4
Biodivers
Factors
Diversity
Biodivers
Internatio | MEGA DIVERSITY
sity Hot-spots, Floristic and Faunal Regions in India and World; IUCN Re
affecting Diversity, Impact of Exotic Species and Human Disturbar
y, Dispersal, Diversity-Stability Relationship; Socio- economic Iss
sity; Sustainable Utilization of Bioresources; National Movement
onal Convention/Treaties on Biodiversity. | 9 hours
ed List;
nce on
ues of
ts and | | | | | | |
| Unit-4
Biodivers
Factors
Diversity
Biodivers
Internation | MEGA DIVERSITY sity Hot-spots, Floristic and Faunal Regions in India and World; IUCN Reaffecting Diversity, Impact of Exotic Species and Human Disturband, Dispersal, Diversity-Stability Relationship; Socio- economic Issisty; Sustainable Utilization of Bioresources; National Movement onal Convention/Treaties on Biodiversity. CONSERVATIONS OF BIODIVERSITY | 9 hours
ed List;
nce on
ues of
ts and
9 hours | | | | | | |
| Unit-4
Biodivers
Factors
Diversity
Biodivers
Internation
Unit-5
In-Situ C
conserva
breeding
Keystone
Species | MEGA DIVERSITY sity Hot-spots, Floristic and Faunal Regions in India and World; IUCN Reaffecting Diversity, Impact of Exotic Species and Human Disturbandy, Dispersal, Diversity-Stability Relationship; Socio- economic Issistic; Sustainable Utilization of Bioresources; National Movement onal Convention/Treaties on Biodiversity. CONSERVATIONS OF BIODIVERSITY Conservation- National parks, Wildlife sanctuaries, Biosphere reserves; ation- Gene bank, Cryopreservation, Tissue culture bank; Long term of Biotanical gardens, Animal Translocation, Zoological Gardens; Conservation, Endangered Species, Threatened Species, Rare Species, Species, Species, Rare Species, | 9 hours
ed List;
nce on
ues of
ts and
9 hours
Ex-situ
captive
cept of
Extinct | | | | | | |
| Unit-4
Biodivers
Factors
Diversity
Biodivers
Internation
Unit-5
In-Situ C
conserva
breeding
Keystone
Species | MEGA DIVERSITY sity Hot-spots, Floristic and Faunal Regions in India and World; IUCN Reaffecting Diversity, Impact of Exotic Species and Human Disturbanty, Dispersal, Diversity-Stability Relationship; Socio- economic Issisty; Sustainable Utilization of Bioresources; National Movement onal Convention/Treaties on Biodiversity. CONSERVATIONS OF BIODIVERSITY Conservation- National parks, Wildlife sanctuaries, Biosphere reserves; ation- Gene bank, Cryopreservation, Tissue culture bank; Long term of, Botanical gardens, Animal Translocation, Zoological Gardens; Come Species, Endangered Species, Threatened Species, Rare Species, Species, Species, Endangered Species, Threatened Species, Rare Species, Specie | 9 hours
ed List;
nce on
ues of
ts and
9 hours
Ex-situ
captive
cept of
Extinct
45 hours | | | | | | |
| Unit-4
Biodivers
Factors
Diversity
Biodivers
Internation
Unit-5
In-Situ C
conserva
breeding
Keystone
Species | MEGA DIVERSITY sity Hot-spots, Floristic and Faunal Regions in India and World; IUCN Regificating Diversity, Impact of Exotic Species and Human Disturbanty, Dispersal, Diversity-Stability Relationship; Socio- economic Issistiv; Sustainable Utilization of Bioresources; National Movement onal Convention/Treaties on Biodiversity. CONSERVATIONS OF BIODIVERSITY Conservation- National parks, Wildlife sanctuaries, Biosphere reserves; ation- Gene bank, Cryopreservation, Tissue culture bank; Long term of Biotanical gardens, Animal Translocation, Zoological Gardens; Conte Species, Endangered Species, Threatened Species, Rare Species, Contexpected Species, Rare Species, Stational Species, Rare Species, Species, Species, Rare Species, Species, Species, Contexpected Species, Contexpected Species, Rare Species, Species, Species, Rare Species, Species, Species, Rare Species, Species, Species, Rare Species, | 9 hours
ed List;
nce on
ues of
ts and
9 hours
Ex-situ
captive
cept of
Extinct
45 hours | | | | | | |
| Unit-4
Biodivers
Factors
Diversity
Biodivers
Internation
Unit-5
In-Situ C
conserva
breeding
Keystone
Species
Text Boo
1. | MEGA DIVERSITY sity Hot-spots, Floristic and Faunal Regions in India and World; IUCN Regative affecting Diversity, Impact of Exotic Species and Human Disturbard, Dispersal, Diversity-Stability Relationship; Socio- economic Issisity; Sustainable Utilization of Bioresources; National Movement onal Convention/Treaties on Biodiversity. CONSERVATIONS OF BIODIVERSITY Conservation- National parks, Wildlife sanctuaries, Biosphere reserves; ation- Gene bank, Cryopreservation, Tissue culture bank; Long terming, Botanical gardens, Animal Translocation, Zoological Gardens; Conte Species, Endangered Species, Threatened Species, Rare Species, expected Species, Context, Species, Context, Species, Endangered Species, Threatened Species, Rare Species, Context, Species, Endangered Species, Threatened Species, Rare Species, Species, Context, Species, Context, Species, Endangered Species, Threatened Species, Rare Species, Species, Species, Endangered Species, Threatened Species, Rare Species, Species, Species, Context, Species, Context, Species, Context, Species, Species, Context, Species, Context, Species, Species | 9 hours
ed List;
nce on
ues of
ts and
9 hours
Ex-situ
captive
cept of
Extinct
45 hours
mic Botany & | | | | | | |
| Unit-4
Biodivers
Factors
Diversity
Biodivers
Internation
Unit-5
In-Situ C
conserva
breeding
Keystone
Species
Text Boo
1. A
E
2. P | MEGA DIVERSITY sity Hot-spots, Floristic and Faunal Regions in India and World; IUCN Reaffecting Diversity, Impact of Exotic Species and Human Disturbare, Dispersal, Diversity-Stability Relationship; Socio- economic Issisty; Sustainable Utilization of Bioresources; National Movement onal Convention/Treaties on Biodiversity. CONSERVATIONS OF BIODIVERSITY Conservation- National parks, Wildlife sanctuaries, Biosphere reserves; ation- Gene bank, Cryopreservation, Tissue culture bank; Long term of Botanical gardens, Animal Translocation, Zoological Gardens; Cone Species, Endangered Species, Threatened Species, Rare Species, expected Species, Cone Species, Endangered Species, Threatened Species, Rare Species, Cone Species, Endangered Species, Taxonomy, Anatomy, Econor Embryology. S. Chand, Limited, Pandey, B. P. January 2001 Principles of Systematic Zoology, Mcgraw-Hill College, Ashlock, P.D., Lagendard Species (Species) | 9 hours ed List; nce on ues of ts and 9 hours 9 hours Ex-situ captive cept of Extinct 45 hours mic Botany & atest Edition. | | | | | | |
| Unit-4
Biodivers
Factors
Diversity
Biodivers
Internation
Unit-5
In-Situ C
conserva
breeding
Keystone
Species
Text Boo
1. A
2. P
3. (2 | MEGA DIVERSITY sity Hot-spots, Floristic and Faunal Regions in India and World; IUCN Reaffecting Diversity, Impact of Exotic Species and Human Disturbare, Dispersal, Diversity-Stability Relationship; Socio- economic Issisty; Sustainable Utilization of Bioresources; National Movement onal Convention/Treaties on Biodiversity. CONSERVATIONS OF BIODIVERSITY Conservation- National parks, Wildlife sanctuaries, Biosphere reserves; ation- Gene bank, Cryopreservation, Tissue culture bank; Long term of a Botanical gardens, Animal Translocation, Zoological Gardens; Come Species, Endangered Species, Threatened Species, Rare Species, expected Species, Conservation, Anatomy, Econor Embryology. S. Chand, Limited, Pandey, B. P. January 2001 Principles of Systematic Zoology, Mcgraw-Hill College, Ashlock, P.D., La Microbiology, MacGraw Hill Companies Inc, Prescott, L.M., Harley, J.P., 2022) | 9 hours ed List; nce on ues of ts and 9 hours 9 hours Ex-situ captive cept of Extinct 45 hours mic Botany & atest Edition. and Klein D.A. | | | | | | |

Course (Code	Course Title	L	ΤP	J	С					
22AGO	E03	ENERGY CONSERVATION AND MANAGEMENT	3	0 0	0	3					
Pro-rog	uisita	NII	Sy	llabus	v	10					
i ie-iequ	lisite		version								
Course Objectives:											
At the end	d of the	course, the student is expected to									
• unde	rstand	and analyse the energy data of industries									
 carry 	out ene	ergy accounting and balancing									
• condu	uct ene	rgy audit and suggest methodologies for energy saving	s an	d							
 utilise 	e the av	vailable resources in optimal ways									
	Jutcom	00'									
1 Rom		the knowledge for Basic combustion and furnace de	sian	and e		tion of					
thern	nal and	mechanical energy equipment	Julia	and S							
2 Stud	v the I	moortance of Stoichiometry relations. Theoretical air	reau	ired for	r cor	nolete					
comb	oustion					npiere					
3. Skills	s on coi	mbustion thermodynamics and kinetics.									
4. Apply	v calcu	lation and design tube still heaters.									
5. Stud	ied diffe	erent heat treatment furnace.									
Unit-1	INTRO	DUCTION		9 h	ours	\$					
Energy -	Power	- Past & Present scenario of World; National Energy	y cor	nsumpti	ion D	Data –					
Environm	ental a	spects associated with energy utilization - Energy A	uditi	ng: Ne	ed, 7	Гурes,					
Methodol	ogy and	d Barriers. Role of Energy Managers. Instruments for er	hergy	y auditir	ng						
Unit-2	ELEC	TRICAL SYSTEMS		9 h	ours	\$					
Compone	ents of	EB billing – HT and LT supply, Transformers, Cab	le S	izing, C	Conc	ept of					
Capacitor	s, Pov	ver Factor Improvement, Harmonics, Electric Motor	rs -	Motor	Effi	ciency					
Computat	tion, Er	ergy Efficient Motors, Illumination – Lux, Lumens, Type	es of	ⁱ lighting	g, Eff	iicacy,					
LED Light	ting and	d scope of Encon in Illumination									
Unit-3	THER	MAL SYSTEMS		9 h	ours	\$					
Stoichiometry, Boilers, Furnaces and Thermic Fluid Heaters – Efficiency computation											
and encon measures. Steam: Distribution &U sage: Steam Traps, Condensate Recovery,											
Flash Ste	am Util	ization, Insulators & Refractories									
Unit-4	ENER	GY CONSERVATION IN MAJOR UTILITIES		9 h	ours	\$					

Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems –Cooling Towers – D.G. sets

Unit-5 ECONOMICS

9 hours

Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concept

Total Lecture hours: 45 hours

Text Book(s)

	Energy	Manager	Training	Manual	(4	Volumes)	available	at
1.	www.ener	rgymanagertra	aining.com.	a website	admini	istered by Bu	ureau of Ene	ergy
	Efficiency	(BEE), a stat	utory body u	nder Ministr	y of Pov	wer, Governme	ent of India, 20)04.
2	Witte. L.C	., P.S. Schmi	dt, D.R. Brov	wn, "Industri	al Ener	gy Manageme	nt and Utilisat	ion"
2.	Hemisphe	ere Publ, Was	hington, 198	8				
3.	Callaghn,	P.W. "Design	and Manag	ement for E	nergy C	Conservation",	Pergamon Pre	ess,
	Oxford, 19	981.						

Course Code	Course Title	L	Т	Ρ	J	С	
22AGOE04	DRINKING WATER SUPPLY AND TREATMENT	3	0	0	0	3	
Pre-requisite	NIL	Syl ve	llab ersio	ous on	V	1.0	_

Course Objectives:

To equip the students with the principles and design of water treatment units and distribution system.

Course Outcome:

- 1. An understanding of water quality criteria and standards, and their relation to public health
- 2. The ability to design the water conveyance system
- 3. The knowledge in various unit operations and processes in water treatment
- 4. An ability to understand the various systems for advanced water treatment
- 5. An insight into the structure of drinking water distribution system

Unit-1 SOURCES OF WATER

Public water supply system – Planning, Objectives, Design period, Population forecasting; Water demand – Sources of water and their characteristics, Surface and Groundwater – Impounding Reservoir – Development and selection of source – Source Water quality – Characterization – Significance – Drinking Water quality standards.

Unit-2 CONVEYANCE FROM THE SOURCE

9 hours

9 hours

Water supply – intake structures – Functions; Pipes and conduits for water – Pipe materials – Hydraulics of flow in pipes – Transmission main design – Laying, jointing and testing of pipes – appurtenances – Types and capacity of pumps – Selection of pumps and pipe materials.

Unit-3 WATER TREATMENT

9 hours

9 hours

Objectives – Unit operations and processes – Principles, functions, and design of water treatment plant units, aerators of flash mixers, Coagulation and flocculation –- sand filters - Disinfection - –Construction, Operation and Maintenance aspects.

Unit-4 ADVANCED WATER TREATMENT

Water softening – Desalination- R.O. Plant – demineralization – Adsorption - Ion exchange– Membrane Systems - Iron and Manganese removal - Defluoridation - Construction and Operation and Maintenance aspects

Unit-5 WATER DISTRIBUTION AND SUPPLY

9 hours

Requirements of water distribution – Components – Selection of pipe material – Service
reservoirs - Functions - Network design - Economics - Computer applications -
Appurtenances - Leak detection - Principles of design of water supply in buildings -
House service connection – Fixtures and fittings, systems of plumbing and types of
plumbing.

Total Lecture hours: 45 hours

Text Book(s)

1.	Garg. S.K., "Water Supply Engineering", Khanna Publishers, Delhi, September 2008.						
2.	Punmia B.C, Arun K.Jain, Ashok K.Jain, "Water supply Engineering" Lakshmi publication private limited, New Delhi, 2016.						
3.	Rangwala "Water Supply and Sanitary Engineering", February 2022						
4.	Birdie.G.S., "Water Supply and Sanitary Engineering", Dhanpat Rai and sons, 2018.						
Reference book(s)							
1.	Fair. G.M., Geyer.J.C., "Water Supply and Wastewater Disposal", John Wiley and Sons,						
	1954						
2.	Babbit.H.E, and Donald.J.J, "Water Supply Engineering", McGraw Hill book Co, 1984						

Course Code	Course Title	L	Т	Ρ	J	С	
22AGOE05	RENEWABLE ENERGY TECHNOLOGIES	3	0	0	0	3	
Pre-requisite	NIL	Syllabus version		v. 1.0			
Course Objectives:							

- To know the Indian and global energy scenario
- To learn the various solar energy technologies and its applications.
- To educate the various wind energy technologies.
- To explore the various bio-energy technologies.
- To study the ocean and geothermal technologies

Course Outcome:

- 1. Discuss the Indian and global energy scenario.
- 2. Describe the various solar energy technologies and its applications.
- 3. Explain the various wind energy technologies.
- 4. Explore the various bio-energy technologies.
- 5. Discuss the ocean and geothermal technologies

Unit-1 ENERGY SCENARIO

9 hours

Indian energy scenario in various sectors – domestic, industrial, commercial, agriculture, transportation and others – Present conventional energy status – Present renewable energy status-Potential of various renewable energy sources-Global energy status-Per capita energy consumption - Future energy plans

Unit-2 SOLAR ENERGY

Solar radiation – Measurements of solar radiation and sunshine – Solar spectrum - Solar thermal collectors – Flat plate and concentrating collectors – Solar thermal applications – Solar thermal energy storage – Fundamentals of solar photo voltaic conversion – Solar cells – Solar PV Systems – Solar PV applications.

Unit-3 WIND ENERGY

9 hours

9 hours

Wind data and energy estimation – Betz limit - Site selection for windfarms – characteristics - Wind resource assessment - Horizontal axis wind turbine – components - Vertical axis wind turbine – Wind turbine generators and its performance – Hybrid systems – Environmental issues - Applications.

Unit-4 BIO-ENERGY

9 hours

Bio resources – Biomass direct combustion – thermochemical conversion biochemical conversion-mechanical conversion - Biomass gasifier - Types of biomass gasifiers - Cogeneration –- Carbonisation – Pyrolysis - Biogas plants – Digesters –Biodiesel production – Ethanol production - Applications.

Unit-5 OCEAN AND GEOTHERMAL ENERGY

9 hours

Small hydro - Tidal energy – Wave energy – Open and closed OTEC Cycles – Limitations – Geothermal energy – Geothermal energy sources - Types of geothermal power plants – Applications - Environmental impact.

	Total Lecture hours: 45 hours						
Text Book(s)							
1.	Fundamentals and Applications of Renewable Energy Indian Edition, by Mehmet Kanoglu, Yunus A. Cengel, John M. Cimbala, cGraw Hill; First edition (10 December 2020), ISBN-10 : 9390385636						
2.	Renewable Energy Sources and Emerging Technologies, by Kothari, Prentice Hall India Learning Private Limited; 2nd edition (1 January 2011), ISBN-10 : 8120344707						
Reference book(s)							
Godfr Press	ey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University , U.K., 2012.						

Rai.G.D., "Non-Conventional Energy Sources", Khanna Publishers, New Delhi, 2014.

Course Code Course Title L T						J	С		
22AGC)E06	REMOTE SENSING CONCEPTS	3	0	0	0	3		
Pre-requisite NIL						abus sion v. 1.0			
Course Objectives:									
• To ir	 To introduce the concepts of remote sensing processes and its components. 								
• To e	expose	the various remote sensing platforms and sensors	and	to	intro	oduc	e the		
elem	ents of	data interpretation							
Course	Outcor	ne:							
	1. L	Inderstand the concepts and laws related to remote sen	sing						
	2. L	Inderstand the interaction of electromagnetic radiation	with	at	mos	pher	e and		
	е	arth material							
	3. A	cquire knowledge about satellite orbits and different typ	es of	f sa	tellit	es			
	4. L	Inderstand the different types of remote sensors							
	5. 0	Gain knowledge about the concepts of interpretation of s	atelli	te i	mag	ery			
Unit-1	REMO	DTE SENSING AND ELECTROMAGNETIC RADIATION	1		9 h	ours	5		
Definitior	n – con	nponents of RS – History of Remote Sensing – Merits	and	l de	mer	its o	f data		
collation	betwee	en conventional and remote sensing methods - Electro	omag	Inet	ic S	pect	rum –		
Radiatior	n princ	iples - Wave theory, Planck's law, Wien's Displac	eme	nt	Law	, St	efan's		
Boltzmar	nn Iaw,	Kirchoff's law - Radiation sources: active & passive - Ra	adiat	ion	Qua	ntitie	es		
Unit-2 EMR INTERACTION WITH ATMOSPHERE AND EARTH 9 hd							5		
	MATE	RIAL							

OPEN ELECTIVES – II

Standard atmospheric profile – main atmospheric regions and its characteristics – interaction of radiation with atmosphere – Scattering, absorption and refraction – Atmospheric windows - Energy balance equation – Specular and diffuse reflectors – Spectral reflectance & emittance – Spectroradiometer – Spectral Signature concepts – Typical spectral reflectance curves for vegetation, soil and water – solid surface scattering in microwave region.

Unit-3 ORBITS AND PLATFORMS

9 hours

Motions of planets and satellites – Newton's law of gravitation - Gravitational field and potential - Escape velocity - Kepler's law of planetary motion - Orbit elements and types – Orbital perturbations and maneuvers – Types of remote sensing platforms - Ground based, Airborne platforms and Space borne platforms – Classification of satellites – Sun synchronous and Geosynchronous satellites – Lagrange Orbit

Unit-4 SENSING TECHNIQUES

9 hours

Classification of remote sensors – Resolution concept : spatial, spectral, radiometric and temporal resolutions - Scanners - Along and across track scanners – Optical-infrared sensors – Thermal sensors – microwave sensors – Calibration of sensors - High Resolution Sensors - LIDAR, UAV – Orbital and sensor characteristics of live Indian earth observation satellites

Unit-5 DATA PRODUCTS AND INTERPRETATION

9 hours

Photographic and digital products – Types, levels and open source satellite data products – selection and procurement of data– Visual interpretation: basic elements and interpretation keys - Digital interpretation – Concepts of Image rectification, Image enhancement and Image classification

Total Lecture hours: 45 hours

Text Book(s)

1. Thomas M.Lillesand, Ralph W. Kiefer and Jonathan W. Chipman, Remote Sensing and Image interpretation, John Wiley and Sons, Inc, New York,2015.

2. George Joseph and C Jeganathan, Fundamentals of Remote Sensing, Third Edition Universities Press (India) Private limited, Hyderabad, 2018

Course Code	Course Title	L	Т	Ρ	J	С			
22AGOE07	INTRODUCTION TO FOOD PROCESSING	3	0	0	0	3			
Pro-requisite	NII	Sy	llab	us	v 10				
	ME	Ve	version		v	v. 1.0			
Course Objectives:									
The course aims to introduce the students to the area of Food Processing. This is necessary									
for effective understanding of a detailed study of food processing and technology subjects.									
This course will enable students to appreciate the importance of food processing with respect									
to the producer, manufacturer and consumer.									

Course Outcome: 1. Be aware of the different methods applied to processing foods. 2. Be aware of the different methods of handling and storage of foods 3. To gain knowledge on large scale food processing techniques 4. To understand food spoilage 5. To understand food hygiene Unit-1 PROCESSING OF FOOD AND ITS IMPORTANCE 9 hours Source of food - plant, animal and microbial origin; different foods and groups of foods as raw materials for processing – cereals, pulses, grains, vegetables and fruits, milk and animal foods, sea weeds, algae, oil seeds & fats, sugars, tea, coffee, cocoa, spices and condiments, additives; need and significance of processing these foods. Unit-2 METHODS OF FOOD HANDLING AND STORAGE 9 hours Nature of harvested crop, plant and animal; storage of raw materials and products using low temperature, refrigerated gas storage of foods, gas packed refrigerated foods, sub atmospheric storage, Gas atmospheric storage of meat, grains, seeds and flour, roots and tubers; freezing of raw and processed foods. Unit-3 LARGE-SCALE FOOD PROCESSING 9 hours Milling of grains and pulses; edible oil extraction; Pasteurisation of milk and yoghurt; canning and bottling of foods; drying - Traditional and modern methods of drying, Dehydration of fruits, vegetables, milk, animal products etc; preservation by use of acid, sugar and salt; Pickling and curing with microorganisms, use of salt, and microbial fermentation; frying, baking, extrusion cooking, snack foods. Unit-4 FOOD WASTES IN VARIOUS PROCESSES 9 hours Waste disposal-solid and liquid waste; rodent and insect control; use of pesticides; ETP; selecting and installing necessary equipment. Unit-5 FOOD HYGIENE 9 hours Food related hazards – Biological hazards – physical hazards – microbiological considerations in foods. Food adulteration - definition, common food adulterants, contamination with toxic metals, pesticides and insecticides; Safety in food procurement, storage handling and preparation; Relationship of microbes to sanitation, Public health hazards due to contaminated water and food; Personnel hygiene; Training& Education for safe methods of handling and processing food; sterilization and disinfection of manufacturing plant; use of sanitizers, detergents, heat, chemicals, Cleaning of equipment and premises.

	Total Lecture hours:	45 hours				
Text Book(s)						
1.	Karnal, Marcus and D.B. Lund "Physical Principles of Food Preservation". Rutledge, 2003. 2.VanGarde, S.J. and Woodburn. M "Food Preservation and Safety Principles and Practice".Surbhi Publications. 2001.					
2.	Sivasankar, B. "Food Processing & Preservation", Prentice Hall of India,	2002				
3.	Khetarpaul, Neelam, "Food Processing and Preservation", Daya Publica	tions, 2005.				

Course Code	е	Course Title	L	Т	Ρ	J	С			
22AGOE08	3	DRONE TECHNOLOGIES	3	0 0 0			3			
Pre-requisite NIL					Syllabus version v. 1.					
Course Obje	Course Objectives:									
To understand the basics of drone concepts										
To learn a	• To learn and understand the fundaments of design, fabrication and programming of drone									
 To impart 	t th	e knowledge of an flying and operation of drone								
To know	abo	out the various applications of drone								
To unders	sta	nd the safety risks and guidelines of fly safely								
Course Outc	om	ne:								
1.	Κ	now about a various type of drone technology, c	Irone	e fa	abric	catior	n and			
	рі	rogramming.								
2.	E	xecute the suitable operating procedures for functioning	ad	ron	е					
3.	S	elect appropriate sensors and actuators for Drones								
4.	D	evelop a drone mechanism for specific applications								
5.	С	reatethe programs for various drones								
Unit-1 INT	RC	DUCTION TO DRONE TECHNOLOGY			9 h	ours	5			
Drone Conce	pt	 Vocabulary Terminology- History of drone - Types of 	cur	ren	t ge	nerat	ion of			
drones based	10	n their method of propulsion- Drone technology impa	ct or	n th	ne b	usine	esses-			
Drone busines	SS	through entrepreneurship- Opportunities/applications for	ent	rep	rene	ursh	ip and			
employability										
Unit-2 DR	ON	IE DESIGN, FABRICATION AND PROGRAMMING			9 h	ours	;			
Classifications	s o	f the UAV -Overview of the main drone parts- Technica	l cha	ara	cteri	stics	of the			
parts -Functio	on (of the component parts -Assembling a drone- The ene	ergy	SOL	urce	s- Le	evel of			
autonomy- Drones configurations -The methods of programming drone- Download program -										
Install program on computer- Running Programs- Multi rotor stabilization- Flight modes -Wi-Fi										
connection										

	B DRON	E FLYING AND OPERATION		9 hours	5	
Conce enviro storaç	ept of oper onmentDro ge capacity	ation for drone -Flight modes- Operate a small drone ne controls Flight operations –management tool –Se - Removable storage devices- Linked mobile devices a	in a c ensors- nd appl	ontrolled Onboard ications		
Unit-4	4 DRON	E COMMERCIAL APPLICATIONS		9 hours	;	
Choos delive transr	sing a dron ring mail, p nission line	e based on the application -Drones in the insurance sec arcels and other cargo- Drones in agriculture- Drones ir s and power distribution -Drones in filming and panoram	tor- Dre n inspee nic pictu	ones in ction of uring		
Unit-{	5 FUTU	RE DRONES AND SAFETY		9 hours	;	
drones -The use of drones in swarms Total Lecture hours: 45 hours						
			ours.	45 nour	S	
Text I	Book(s)		ours.	45 NOUI	S	
Text I 1.	Book(s) Daniel Ta Construc Implemer	al and John Altschuld, "Drone Technology in Architect ion: A Strategic Guide to Unmanned Aerial Vel itation", 2021 John Wiley & Sons, Inc.	ure, Er nicle C	ngineerin Dperation	g and and	
Text I 1. 2.	Book(s) Daniel Ta Construc Implemen Terry Kill 2016	al and John Altschuld, "Drone Technology in Architect ion: A Strategic Guide to Unmanned Aerial Vel itation", 2021 John Wiley & Sons, Inc. by and Belinda Kilby, "Make:Getting Started with Drone	ure, Er nicle C s ",Mał	ngineerin Operation	g and and a, Inc,	
1. 2. Refere	Book(s) Daniel Ta Construc Implemen Terry Kilk 2016 ence book	al and John Altschuld, "Drone Technology in Architect ion: A Strategic Guide to Unmanned Aerial Vel atation", 2021 John Wiley & Sons, Inc. by and Belinda Kilby, "Make:Getting Started with Drone s)	ure, Er nicle C s ",Mał	ngineerin Operation Ker Media	g and and a, Inc,	
1. 2. Refere	Book(s) Daniel Ta Construc Implemen Terry Kilk 2016 ence book John Bai ROVs", C	al and John Altschuld, "Drone Technology in Architect ion: A Strategic Guide to Unmanned Aerial Vel atation", 2021 John Wiley & Sons, Inc. by and Belinda Kilby, "Make:Getting Started with Drone s) chtal, "Building Your Own Drones: A Beginners' Guide t bue Publishing, 2016	ure, Er nicle C s ",Mał	ngineerin Operation ker Media	g and and a, Inc, s, and	
Text I1.2.Refere12	Book(s) Daniel Ta Construc Implemen Terry Kilk 2016 ence book John Bai ROVs", G Zavrsnik, Security a	al and John Altschuld, "Drone Technology in Architect ion: A Strategic Guide to Unmanned Aerial Ver itation", 2021 John Wiley & Sons, Inc. by and Belinda Kilby, "Make:Getting Started with Drone s) chtal, "Building Your Own Drones: A Beginners' Guide t itue Publishing, 2016 "Drones and Unmanned Aerial Systems: Legal and S and Surveillance", Springer, 2018.	ure, Er nicle C s ",Mał	ngineerin Operation ker Media es, UAVs	g and and a, Inc, s, and ns for	

Course Code	Course little	L		Р	J	C	
22AGOE09	GEOGRAPHICAL INFORMATION SYSTEM	3	0	0	0	3	
Pre-requisite	NII	Sy	llab	us	v	10	
		ve	ersio	on	v	. 1.0	
Course Objecti	ves:						
To impart the kn	owledge on basic components, data preparation and im	plen	nen	tatic	on of		
Geographical Inf	formation System.						
Course Outeen							

Course Outcome:

- 1. Have basic idea about the fundamentals of GIS.
- 2. Understand the types of data models.
- 3. Get knowledge about data input and topology

- 4. Gain knowledge on data quality and standards
- 5. Understand data management functions and data output

Unit-1	FUNDAMENTALS OF GIS	9 hours
Introducti	on to GIS - Basic spatial concepts - Coordinate Systems - GIS a	nd Information
Systems	- Definitions - History of GIS - Components of a GIS - Hardware, S	oftware, Data,
People, N	Methods – Proprietary and open source Software - Types of data – Sp	oatial, Attribute
data- type	es of attributes – scales/ levels of measurements.	

Unit-2 SPATIAL DATA MODELS

Database Structures – Relational, Object Oriented – Entities – ER diagram - data models - conceptual, logical and physical models - spatial data models – Raster Data Structures – Raster Data Compression - Vector Data Structures - Raster vs Vector Models- TIN and GRID data models

Unit-3 DATA INPUT AND TOPOLOGY

9 hours

9 hours

Scanner - Raster Data Input – Raster Data File Formats – Georeferencing – Vector Data Input – Digitizer – Datum Projection and reprojection -Coordinate Transformation – Topology - Adjacency, connectivity and containment – Topological Consistency – Non topological file formats - Attribute Data linking – Linking External Databases – GPS Data Integration

Unit-4 DATA QUALITY AND STANDARDS

9 hours

Data quality - Basic aspects - completeness, logical consistency, positional accuracy, temporal accuracy, thematic accuracy and lineage – Metadata – GIS Standards – Interoperability - OGC - Spatial Data Infrastructure

Unit-5 DATA MANAGEMENT AND OUTPUT

9 hours

Import/Export – Data Management functions- Raster to Vector and Vector to Raster Conversion - Data Output - Map Compilation – Chart/Graphs – Multimedia – Enterprise Vs. Desktop GISdistributed GIS.

Total Lecture hours: 45 hours

Text Book(s)

- 1. Kang Tsung Chang, Introduction to Geographic Information Systems, McGraw Hill Publishing, 2nd Edition, 2011.
- 2. Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction Geographical Information Systems, Pearson Education, 2nd Edition,2007.

Reference book(s)

1. Lo. C. P., Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, Prentice-Hall India Publishers, 2006

		_	•	F	J	L L
22AGOE10 BASICS OF INTEGRATED WATER RESOURC MANAGEMENT	S	3	0	0	0	0
Pre-requisite NIL		Syllabus version		v. 1.0		
Course Objectives:						
1. To introduce the interdisciplinary approach of water manage	men	ıt.				
2. To develop knowledge base and capacity building on IWRN						
Course Outcomer						
On completion of the course, the student will be able to apply appr	nriat	to m	an	2000	oont	
techniques towards managing the water resources.	pna			ayen	ient	
CO1 Describe the context and principles of IWRM: Com	bare	the	co	nver	ntion	al and
integrated ways of water management.						
CO2 Discuss on the different water uses; how it is impacte	d and	d wa	iys	to ta	ackle	these
impacts.						
CO3 Explain the economic aspects of water and choose	the	best	e	cono	mic	option
among the alternatives; illustrate the pros and cons of PPP	hrou	igh c	as	e stu	udies	•
CO4 Illustrate the recent trends in water management.						
CO5 Understand the implementation hitches and the institu	iona	l frar	ne	work	S.	
Unit-1 OVERVIEW OF IWRM	IEW OF IWRM 9 hours					
Facts about water - Definition – Key challenges - Paradigm shift - Wa	ter m	nana	ige rid	men	t Prir	ncipies
- Social equity - Ecological sustainability – Economic eniciency - St	- 25		nu	vval		Jums.
Unit-2 WATER USE SECTORS: IMPACTS AND SOLUT	ON			9 h	ours	6
Water users: People, Agriculture, ecosystem and others - Impacts	of the	e wa	ter	use	sect	ors on
water resources - Securing water for people, food production, ec	syst	ems	ar	nd of	ther	uses -
IWRM relevance in water resources management						
Unit-3 WATER ECONOMICS				9 h	ours	5
Economic characteristics of water good and services – Economic in	stru	men	ts -	– Pri	vate	sector
involvement in water resources management - PPP experiences through case studies						
Unit-4 RECENT TREANDS IN WATER MANAGEMEN	Т			9 h	ours	5
River basin management - Ecosystem Regeneration – 5 Rs - WASH - Sustainable livelihood -						
Water management in the context of climate change						
				0 h		
		<u> </u>		90		

Barriers to implementing IWRM - Policy and legal framework - Bureaucratic reforms and inclusive development - Institutional Transformation - Capacity building - Case studies on conceptual framework of IWRM.

Total Lecture hours: 45 hours

Text E	Book(s)
1.	Cech Thomas V., Principles of water resources: history, development, management and
	policy. John Wiley and Sons Inc., New York. 2003.
2	Mollinga P. et al. " Integrated Water Resources Management", Water in South Asia
۷.	Volume I, Sage Publications, 2006
Refer	ence Books
1	Technical Advisory Committee, Background Papers No: 1, 4 and 7, Stockholm, Sweden.
Ι.	2002.
2.	IWRM Guidelines at River Basin Level (UNESCO, 2008).
	Tutorial on Basic Principles of Integrated Water Resources Management ,CAP-NET.
3.	http://www.pacificwater.org/userfiles/file/IWRM/Toolboxes/introduction%20to%20iwrm/
	Tutorial _text.pdf
4.	Pramod R. Bhave, 2011, Water Resources Systems, Narosa Publishers.
5.	The 17 Goals, United Nations, https://sdgs.un.org/goals.

Course Code	Course Title	L	Т	Ρ	J	С
22AGOE11	Energy Technology	3	0	0	0	0
Pre-requisite	NIL	Sy ve	llab rsio	ous on	v.	1.0
Course Objecti	ves:					

- 1. To introduce the various types of renewable fuels
- 2. To compare renewable technologies with fossil fuels and among themselves
- 3. To identify current developments in renewable energy technologies

Course Outcome:

On completion of the course, the students will be able to

- CO1: Students will be able to describe the fundamentals and main characteristics of renewable energy sources and their differences compared to fossil fuels.
- CO2: Students will excel as professionals in the various fields of energy engineering
- CO3: Compare different renewable energy technologies and choose the most appropriate based on local conditions.
- CO4: Explain the technological basis for harnessing renewable energy sources.
- CO5: Identify and critically evaluate current developments and emerging trends within the field of renewable energy technologies and to develop in-depth technical understanding of energy problems at an advanced level.

Unit-1 INTRODUCTION

9 hours

Units of energy, conversion factors, general classification of energy, world energy resources and energy consumption, Indian energy resources and energy consumption, energy crisis, energy alternatives, Renewable and non-renewable energy sources and their availability. Prospects of Renewable energy sources Unit-2 CONVENTIONAL ENERGY 9 hours Conventional energy resources, Thermal, hydel and nuclear reactors, thermal, hydel and nuclear power plants, efficiency, merits and demerits of the above power plants, combustion processes, fluidized bed combustion. NON-CONVENTIONAL ENERGY Unit-3 9 hours Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooling, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, solar energy application in India, energy plantations. Wind energy, types of windmills, types of wind rotors, Darrieus rotor and Gravian rotor, wind electric power generation, wind power in India, economics of wind farm, ocean wave energy conversion, ocean thermal energy conversion, tidal energy conversion, geothermal energy Unit-4 **BIOMASS ENERGY** 9 hours Biomass energy resources, thermo-chemical and biochemical methods of biomass conversion, combustion, gasification, pyrolysis, biogas production, ethanol, fuel cells, alkaline fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, solid polymer electrolyte fuel cell, magneto hydrodynamic power generation, energy storage routes like thermal energy storage, chemical, mechanical storage and electrical storage. ENERGY CONSERVATION Unit-5 9 hours Energy conservation in chemical process plants, energy audit, energy saving in heat exchangers, distillation columns, dryers, ovens and furnaces and boilers, steam economy in chemical plants, energy conservation. Total Lecture hours: 45 hours Text Book(s) 1. Rao, S. and Parulekar, B.B., Energy Technology, Khanna Publishers, 2005. 2. Rai, G.D., Non-conventional Energy Sources, Khanna Publishers, New Delhi, 1984. Bansal, N.K., Kleeman, M. and Meliss, M., Renewable Energy Sources and Conversion 3. Technology, Tata McGraw Hill, 1990. 4. Nagpal, G.R., Power Plant Engineering, Khanna Publishers, 2008. **Reference Books** Nejat Vezirog, Alternate Energy Sources, IT, McGraw Hill, New York. 1. Curriculum and Syllabus | B.Tech - Agricultural Engineering | R2022 | Page | 194

2.	El. Wakil, Power Plant Technology, Tata McGraw Hill, New York, 2002.
3.	Sukhatme. S.P., Solar Enery - Thermal Collection and Storage, Tata McGraw hill, New Delhi, 1981.

Course Code	Course Title	L	Т	Ρ	J	С
22AGOE12	FUNDAMENTALS OF FOOD ENGINEERING	3	0	0	0	0
Pre-requisite	NIL	Sy ve	llab ersio	ous on	V.	. 1.0

Course Objectives: The course aims to

- 1. acquaint and equip the students with different techniques of measurement of engineering properties.
- 2. make the students understand the nature of food constituents in the design of processing equipment

Course Outcome:

At the end of the course the students will be able to

- CO1 understand the importance of food polymers
- CO2 understand the effect of various methods of processing on the structure and texture of food materials
- CO3 understand the interaction of food constituents with respect to thermal, electrical properties to develop new technologies for processing and preservation.

Unit-1 BASIC PROPERTIES OF FOOD MATERIALS

9 hours

9 hours

Engineering properties of food materials: physical, thermal, aerodynamic, mechanical, optical and electromagnetic properties.

Unit-2 DRYING AND DEHYDRATION

Basic drying theory, heat and mass transfer in drying, drying rate curves, calculation of drying times, dryer efficiencies; classification and selection of dryers; tray, vacuum, osmotic, fluidized bed, pneumatic, rotary, tunnel, trough, bin, belt, microwave, IR, heat pump and freeze dryers; dryers for liquid: Drum or roller dryer, spray dryer and foam-mat dryers

Unit-3 SIZE REDUCTION

9 hours

9 hours

Benefits, classification, determination and designation of the fineness of ground material, sieve/screen analysis, principle and mechanisms of comminution of food, Rittinger's, Kick's and Bond's equations, work index, energy utilization; Size reduction equipment: Principal types, crushers (jaw crushers, gyratory, smooth roll), hammer mills and impactors, attrition mills, buhr mill, tumbling mills, tumbling mills, ultra fine grinders, fluid jet pulverizer, colloid mill, cutting machines (slicing, dicing, shredding, pulping)

Unit-4	MIXING

Theory of solids mixing, criteria of mixer effectiveness and mixing indices, rate of mixing, theory

of liquid mixing, power requirement for liquids mixing; Mixing equipment: Mixers for lo.w- or medium-viscosity liquids (paddle agitators, impeller agitators, powder-liquid contacting devices, other mixers), mixers for high viscosity liquids and pastes, mixers for dry powders and particulate solids.

Unit-5 MECHANICAL SEPARATIONS

9 hours

Theory, centrifugation, liquid-liquid centrifugation, liquid-solid centrifugation, clarifiers, desludging and decanting machine, Filtration: Theory of filtration, rate of filtration, pressure drop during filtration, applications, constant-rate filtration and constant-pressure filtration, derivation of equation; Filtration equipment; plate and frame filter press, rotary filters, centrifugal filters and air filters, filter aids, Membrane separation: General considerations, materials for membrane construction, ultra-filtration, microfiltration, concentration, polarization, processing variables, membrane fouling, applications of ultra-filtration in food processing, reverse osmosis, mode of operation, and applications; Membrane separation methods, demineralization by electro-dialysis, gel filtration, ion exchange, per-evaporation and osmotic dehydration

Total Lecture hours: 45 hours

Text Book(s)

1.	R.L. Earle. 2004. Unit Operations in Food Processing. The New Zealand Intitute of Food
	Science & Technology, Nz, Warren L, McCabe, Julian Smith, Peter Harriott, 2004
0	Unit Operations of Chemical Engineering, 7th Ed. McGraw-Hill, Inc., NY, USA. Christie
Ζ.	John Geankoplis. 2003.

Reference Books

1.	Transport Processes and Separation Process Principles (Includes Unit Operations), 4th
	Ed. Prentice-Hall, NY, USA.
•	George D. Saravacos and Athanasios E. Kostaropoulos. 2002. Handbook of Food
2.	Processing Equipment. Springer Science+Business Media, New York, USA.

3	J. F. Richardson, J. H. Harker and J. R. Backhurst. 2002. Coulson & Richardson's
э.	Chemical Engineering, Vol. 2, Particle Technology and Separation Processes, 5th Ed.

Course Code	Course Title	L	Т	Ρ	L	С	
22AGOE13	FOOD SAFETY AND QUALITY REGULATIONS	3	0	0	0	0	
Pro roquisito	NIL	Syllabus		us	v 10		
Fie-iequisite		ve	rsic	n	v. 1.0		
Course Objectives:							
1. To characterize different type of food hazards, physical, chemical and biological in the industry							
and food service establishments							
2. To help become skilled in systems for food safety surveillance							
3. To be aware of the regulatory and statutory bodies in India and the world							

4. To ensure processed food meets global standard

Course Outcome:

- 1. Thorough Knowledge of food hazards, physical, chemical and biological in the industry and food service establishments
- 2. Awareness on regulatory and statutory bodies in India and the world

Unit-1INTRODUCTION TO FOOD SAFETY AND SECURITY9 hoursHygienic design of food plants and equipments, Food Contaminants (Microbial, Chemical,
Physical), Food Adulteration (Common adulterants), Food Additives (functional role, safety
issues), Food Packaging & labeling. Sanitation in warehousing, storage, shipping, receiving,
containers and packaging materials. Control of rats, rodents, mice, birds, insects and microbes.
Cleaning and Disinfection, ISO 22000 – Importance and Implementation9 hours

Unit-2 FOOD QUALITY

Various Quality attributes of food, Instrumental, chemical and microbial Quality control. Sensory evaluation of food and statistical analysis. Water quality and other utilities.

Unit-3 RISK ASSESSMENT

Critical Quality control point in different stages of production including raw materials and processing materials. Food Quality and Quality control including the HACCP system. Food inspection and Food Law, Risk assessment – microbial risk assessment, dose response and exposure response modelling, risk management, implementation of food surveillance system to monitor food safety, risk communication

Unit-4 INDIAN AND GLOBAL REGULATIONS

9 hours

9 hours

9 hours

9 hours

: FAO in India, Technical Cooperation programmes, Bio-security in Food and Agriculture, World Health Organization (WHO), World Animal Health Organization (OIE), International Plant Protection Convention (IPPC)

Unit-5 CODEX ALIMENTARIUS COMMISSION

Codex Alimentarius Commission - Codex India – Role of Codex Contact point, National Codex contact point (NCCP), National Codex Committee of India – ToR, Functions, Shadow Committees etc.

Total Lecture hours: 45 hours

Text Book(s)

1.	Handbook of food toxicology by S. S. Deshpande, 2002
2.	The food safety information handbook by Cynthia A. Robert, 2009
Refer	ence Books
1.	Nutritional and safety aspects of food processing by Tannenbaum SR, Marcel Dekker Inc., New York 1979

2.	Microbiological safety of Food by Hobbs BC, 1973
3.	Food Safety Handbook by Ronald H. Schmidt, Gary E. Rodrick, A John Wiley & Sons Publication, 2003